Rapid development of keratoacanthoma following chemical peel.

J Cosmet Dermatol

Department of Dermatology and Allergy, Copenhagen University Hospital, Herlev and Gentofte, Denmark.

Published: November 2022

Download full-text PDF

Source
http://dx.doi.org/10.1111/jocd.15346DOI Listing

Publication Analysis

Top Keywords

rapid development
4
development keratoacanthoma
4
keratoacanthoma chemical
4
chemical peel
4
rapid
1
keratoacanthoma
1
chemical
1
peel
1

Similar Publications

2H-NMR as a Practical Tool for Following MOF Formation: A Case Study of UiO-66.

Angew Chem Int Ed Engl

January 2025

Memorial University of Newfoundland, Chemistry, Department of Chemistry, 230 Elizabeth avenue, A1B 3X7, St. John's, CANADA.

Developing the mechanism for MOF formation is crucial for the rapid development of new materials. This work demonstrates that Deuterium-NMR spectroscopy is the optimal inter-laboratory methodology for understanding the in-situ kinetics of metal-organic framework (MOF) formation. This method is facile, affordable, and allows for the isolation and monitoring of individual reagents by using one deuterated component while the remaining components are protonated.

View Article and Find Full Text PDF

The value of magnetic resonance imaging of the optic nerve for the diagnosis of multiple sclerosis in patients with optic neuritis.

J Neurol

January 2025

Department of Neurology, Clinic of Optic Neuritis and Danish Multiple Sclerosis Center, Rigshospitalet-Glostrup, Valdemar Hansens Vej 13, 2600, Glostrup, Denmark.

Background: Although optic neuritis (ON) is common in multiple sclerosis (MS), lesions of the optic nerve are not included as an anatomical substrate for dissemination in space and time (DIS and DIT).

Objective: To assess the increase in sensitivity of including MRI lesions of the optic nerve for the diagnosis of MS in patients with ON.

Methods: We included patients consecutively referred with first time, monosymptomatic ON, with no known cause of the ON, who underwent orbital MRI including fat suppressed T2 and T1-sequences with and without gadolinium contrast.

View Article and Find Full Text PDF

The study of land cover dynamics and the valuation of ecosystem services in coastal cities is pivotal for guiding sustainable urban development and conserving natural resources amidst the unique challenges posed by their geographical and ecological contexts. This study utilizes a 30 m × 30 m land use/cover change (LUCC) dataset to elucidate the spatiotemporal evolution of LUCC and ecosystem service value (ESV) and the trade-offs and synergistic relationships among ecosystem services in the coastal city of Qingdao under three different scenarios over the past 35 years and in the future based on the dual perspective of the past-future by using the equivalent factor approach (EFA), the PLUS model, and Spearman's rank correlation coefficient. The findings reveal a pronounced expansion in built-up areas in Qingdao from 1985 to 2020, with a concomitant significant reduction in cropland, leading to a fluctuation in the total ESV, which initially increased and then declined.

View Article and Find Full Text PDF

A AuNSs@PB@Ag-Apt surface-enhanced Raman scattering (SERS) probe has been developed by embedding Prussian blue (PB) between Au core and Ag shell. The PB SERS probe illustrates strong SERS activity in the Raman silent region of 2070 cm, and has a zero background signal, ensuring high sensitivity for the detection of Staphylococcus aureus (S. aureus).

View Article and Find Full Text PDF

Wearable Biodevices Based on Two-Dimensional Materials: From Flexible Sensors to Smart Integrated Systems.

Nanomicro Lett

January 2025

Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beihang University, Beijing, 100191, People's Republic of China.

The proliferation of wearable biodevices has boosted the development of soft, innovative, and multifunctional materials for human health monitoring. The integration of wearable sensors with intelligent systems is an overwhelming tendency, providing powerful tools for remote health monitoring and personal health management. Among many candidates, two-dimensional (2D) materials stand out due to several exotic mechanical, electrical, optical, and chemical properties that can be efficiently integrated into atomic-thin films.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!