AI Article Synopsis

  • Osteosarcoma is the most common primary bone cancer in young people and is linked to the activation of the RAS pathway, which affects its progression and chances of survival.
  • By analyzing RNA data and employing various computational methods, researchers identified two distinct subtypes of osteosarcoma patients based on RAS-related genes, which also served as strong indicators for prognosis.
  • The study highlighted the biological and immune environment differences associated with these subtypes, suggesting that RAS signaling significantly influences cancer development and the tumor microenvironment.

Article Abstract

Background: Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents with a high incidence and poor prognosis. Activation of the RAS pathway promotes progression and metastasis of osteosarcoma. RAS has been studied in many different tumors; however, the prognostic value of RAS-associated genes in OS remains unclear. On this basis, we investigated the RAS-related gene signature and explored the intrinsic biological features of OS.

Methods: We obtained RNA transcriptome sequencing data and clinical information of osteosarcoma patients from the TARGET database. RAS pathway-related genes were obtained from the KEGG pathway database. Molecular subgroups and risk models were developed using consensus clustering and least absolute shrinkage and selection operator (LASSO) regression, respectively. ESTIMATE algorithm and ssGSEA analysis were used to assess the tumor microenvironment and immune penetrance between the two groups. A comprehensive review of gene ontology (GO) and KEGG analyses revealed inherent biological functional differences between the two groups.

Results: The consistent clustering showed stratification of osteosarcoma patients into two subtypes based on RAS-associated genes and provided a robust prediction of prognosis. A risk model further confirmed that RAS-related genes are the best prognostic indicators for OS patients. GO analysis showed that GDP/GTP binding, focal adhesion, cytoskeletal motor activity, and cell-matrix junctions were associated with the RAS-related model group. Furthermore, RAS signaling in osteosarcoma based on KEGG analysis was significantly associated with cancer progression, with immune function and tumor microenvironment particularly affected.

Conclusion: We constructed a prognostic model founded on RAS-related gene and demonstrated its predictive ability. Then, furtherly exploration of the molecular mechanisms and immune characteristics proved the role of RAS-related gene in the dysregulation in OS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9427258PMC
http://dx.doi.org/10.1155/2022/5939158DOI Listing

Publication Analysis

Top Keywords

ras-related gene
16
gene signature
8
ras-associated genes
8
osteosarcoma patients
8
tumor microenvironment
8
ras-related
6
osteosarcoma
6
gene
5
novel defined
4
defined ras-related
4

Similar Publications

The mesenchymal stem cell (MSC) secretome plays a pivotal role in shaping the tumor microenvironment, influencing both cancer progression and potential therapeutic outcomes. In this research, by using publicly available dataset GSE196312, we investigated the role of MSC secretome on breast cancer cell gene expression. Our results raveled differentially expressed genes, including the upregulation of Phosphatidylinositol-3,4,5-Trisphosphate Dependent Rac Exchange Factor 1 (PREX1), C-C Motif Chemokine Ligand 28 (CCL28), and downregulation of Collagen Type I Alpha 1 Chain (COL1A1), Collagen Type I Alpha 3 Chain (COL1A3), Collagen Type III Alpha 1 Chain (COL3A1), which contributing to extra cellular matrix (ECM) weakening and promoting cell migration.

View Article and Find Full Text PDF

Background: There is still no reliable therapeutic targets and effective pharmacotherapy for metabolic dysfunction-associated steatotic liver disease (MASLD). RASD1 is short for Ras-related dexamethasone-induced 1, a pivotal factor in various metabolism processes of Human. However, the role of RASD1 remains poorly illustrated in MASLD.

View Article and Find Full Text PDF

The cGAS-STING pathway activates transcription factor TFEB to stimulate lysosome biogenesis and pathogen clearance.

Immunity

December 2024

Department of Thoracic Surgery of Sir Run Run Shaw Hospital, and Department of Biochemistry, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China. Electronic address:

Induction of autophagy is an ancient function of the cyclic GMP-AMP (cGAMP) synthase (cGAS)-stimulator of interferon genes (STING) pathway through which autophagic cargoes are delivered to lysosomes for degradation. However, whether lysosome function is also modulated by the cGAS-STING pathway remains unknown. Here, we discovered that the cGAS-STING pathway upregulated lysosomal activity by stimulating lysosome biogenesis independently of the downstream protein kinase TANK-binding kinase 1 (TBK1).

View Article and Find Full Text PDF

Melanomas, which develop on malignant transformations of melanocytes, are highly malignant and prone to metastasis; therefore, effective drugs are required. The (MC) extract has been shown to suppress cancer cell proliferation and invasion; however, the effect of the MC extract on melanoma in living organisms remains unclear. In this study, we investigated the mechanism underlying the amelioration of melanoma cell extravasation into mouse lungs by the MC extract.

View Article and Find Full Text PDF

The Ras-related nuclear GTPase RAN1 ensures pollen size and tube growth by maintaining the actin cytoskeleton.

J Cell Sci

January 2025

Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Center for Biological Science and Technology, Guangdong Zhuhai-Macao Joint Biotech Laboratory, Beijing Normal University, Zhuhai 519087, China.

Controlling organ size in plants is a complex biological process influenced by various factors, including gene expression, genome ploidy and environmental conditions. Despite its importance for plant growth and development, the mechanisms underlying organ size regulation remain unknown. Here, we investigated the role of RAN1, a member of the Ras-related nuclear GTPase family, in regulating pollen size.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!