Alkaline pH can induce triacylglyceride accumulation in microalgae, however its molecular mechanism remains elusive. Here, we investigated the effect of 2-[N-cyclohexylamino]-ethane-sulfonic acid (CHES) -induced intracellular alkalization on the lipid production in . Intracellular pH was increased upon CHES treatment, displaying a high BCECF fluorescence ratio. CHES treatment significantly induced lipid accumulation but had no change in cell density and biomass. The expression of genes involved in photoreaction, carbon fixation, glycolysis, pentose phosphate pathway, amino acid catabolism, GS/GOGAT cycle, TCA cycle, triacylglyceride assembly, fatty acid synthesis were up-regulated, while that in amino acid biosynthesis were down-regulated under CHES conditions. Correspondingly, the activity of phosphoribulokinase, carbonic anhydrase, pyruvate dehydrogenase and acetaldehyde dehydrogenase were enhanced by CHES treatment. Chloroplast-specific biological processes were activated by CHES treatment in , which redirects the flux of carbon into lipid biosynthesis, meanwhile stimulates fatty acid biosynthesis, leading to lipid accumulation under CHES conditions. These indicate an enhancement of intermediate metabolism, resulting in lipid accumulation by CHES.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9425035PMC
http://dx.doi.org/10.3389/fmicb.2022.969639DOI Listing

Publication Analysis

Top Keywords

ches treatment
16
lipid accumulation
12
lipid production
8
ches
8
amino acid
8
fatty acid
8
acid biosynthesis
8
ches conditions
8
accumulation ches
8
lipid
6

Similar Publications

It is believed that inflammation influences several physiological processes, including the function of the central nervous system. Moreover, the impairment of lipid mechanisms/pathways is associated with neurodegenerative disorders and onset of Alzheimer's disease (AD). AD is a chronic neurodegenerative disease representing the major cause of dementia worldwide.

View Article and Find Full Text PDF

Background: Antipsychotic-induced weight gain (AIWG) is a common side effect of antipsychotic drugs and may lead to cardiometabolic comorbidities. There is an urgent public health need to identify patients at high risk of AIWG and determine potential biomarkers for AIWG.

Methods: In the Sequential Multiple-Assignment Randomized Trials to Compare Antipsychotic Treatments (SMART-CAT) trail, first-episode schizophrenia patients were randomly assigned to olanzapine, risperidone, perphenazine, amisulpride or aripiprazole for 8 weeks.

View Article and Find Full Text PDF

Contemporary research evidence has corroborated a gradual loss of central cholinergic neurons in Alzheimer's Disease (AD). This progressive deterioration leads to cognitive dysfunction and impaired motor activity, culminating in the brain cell's death in the disease. The approved drugs for AD treatment can only offer relief from symptoms without addressing the underlying pathological hallmarks of the disease.

View Article and Find Full Text PDF

Efficient Access to New Thienobenzo-1,2,3-Triazolium Salts as Preferred Dual Cholinesterase Inhibitors.

Biomolecules

October 2024

Department of Organic Chemistry, Faculty of Chemical Engineering and Technology, University of Zagreb, Trg Marka Marulića 19, HR-10 000 Zagreb, Croatia.

In previous research, 1,2,3-triazolium salts showed significant biological activity as potential inhibitors of cholinesterase enzymes (ChEs), which are crucial for neurotransmission. In this research, pairs of uncharged thienobenzo-triazoles and their charged salts were prepared in order to further examine the role of the positive charge on the nitrogen of the triazole ring in interactions within the active site of the enzymes, and to compare the selectivity of 1,2,3-triazolium salts in relation to their uncharged analogs obtained by photochemical cyclization. Neutral thienobenzo-triazoles showed very good selective activity toward butyrylcholinesterase (BChE), while their salts showed excellent non-selective inhibition toward both BChE (the most active : IC 0.

View Article and Find Full Text PDF

Background: Retinopathy of prematurity (ROP) is a leading cause of blindness in infants, affecting 32% of hospitalized preterm infants. Oxidative stress, a primary pathogenic factor in ROP, triggers abnormal neovascularization of retinal vessels. Lutein, an antioxidant and the main component of macular pigment, is found in low levels in preterm infants and may help ameliorate ROP.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!