Association between urinary concentrations of bisphenol A substitutes and diabetes in adults.

World J Diabetes

Universidad de Alcalá, Department of Biological Systems/Physiology Unit, Alcalá de Henares 28871, Spain.

Published: July 2022

Background: Due to new restrictions on the use of bisphenol A (BPA), industries are beginning to replace it with derived molecules such as bisphenol S and F (BPS and BPF). There is extensive evidence in the academic literature on the potential health effects of BPA, which is known to be a diabetogenic molecule. However, there are few publications related to new compounds derived from BPA.

Aim: To perform an epidemiological study of urinary BPS and BPF in the American National Health and Nutrition Examination Survey (NHANES) cohort, and analyze their possible relationship with diabetes mellitus.

Methods: NHANES datasets from 2013 to 2016 were used due to the urinary BPF and BPS availability. Data from 3658 adults were analyzed to perform regression analysis exploring the possible relationship between BPA-derived compounds and diabetes.

Results: Descriptive statistics, linear regression modeling, and logistic regression analysis revealed a significant relationship between urinary BPS, but not BPF, and diabetes risk. Additionally, a relationship was observed between both compounds and hypertension and a slight relationship between BPF and dyslipidemia.

Conclusion: In the present study, a strong relationship between urinary BPS, not BPF, and diabetes risk has been determined. BPA substitute molecules do not exempt the population from potential health risks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9329846PMC
http://dx.doi.org/10.4239/wjd.v13.i7.521DOI Listing

Publication Analysis

Top Keywords

bps bpf
16
urinary bps
12
potential health
8
regression analysis
8
relationship urinary
8
bpf diabetes
8
diabetes risk
8
bpf
6
relationship
6
bps
5

Similar Publications

Comprehensive assessment of the safety of bisphenol A and its analogs based on multi-toxicity tests in vitro.

J Hazard Mater

December 2024

National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

As substitutes for bisphenol A (BPA), bisphenol analogs (BPs) have raised concerns due to their frequent environmental detection and unclear safety. Here, the cytotoxicity, endocrine disruption, neurotoxicity, aryl hydrocarbon receptor (AhR) activity, and genotoxicity of nine BPs and BPA were evaluated in three types of cell lines. Over half of the tested BPs exhibited greater cytotoxicity than BPA, with IC50 values showing a linear correlation with Log (R²=0.

View Article and Find Full Text PDF

Bisphenols can enter the body, where they have potential adverse effects on human health, via different routes such as inhalation, dermally or orally. They are known as endocrine disrupting chemicals that activate signaling pathways by mimicking the estrogen actions. In this study, we aimed to investigate effects of bisphenol A (BPA), and its analogues bisphenol F (BPF) and bisphenol S (BPS) on MCF-10A cells and their impact mechanisms on autophagy, apoptosis and reduced glutathion levels.

View Article and Find Full Text PDF

Background: Bisphenols are prevalent in food, plastics, consumer goods, and industrial products. Bisphenol A (BPA) and its substitutes, bisphenol F (BPF) and bisphenol S (BPS), are known to act as estrogen mimics, leading to reproductive disorders, disruptions in fat metabolism, and abnormalities in brain development.

Objectives: Despite numerous studies exploring the adverse effects of bisphenols both and , the molecular mechanisms by which these compounds affect lung cells remain poorly understood.

View Article and Find Full Text PDF

Graphyne-supported manganese single-atom nanozyme sensor array for bisphenol identification.

Talanta

December 2024

Department of Chemistry & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, PR China. Electronic address:

Bisphenols, as common industrial raw materials, are widely used in food packaging such as plastics. However, their migration and residue may affect the hormone secretion of the human body and then lead to health problems. Therefore, a low-cost, rapid and simple detection method that can simultaneously detect multiple bisphenols is very necessary.

View Article and Find Full Text PDF

Concerns persist about the potential impact of prenatal exposure to bisphenols (BP) and their replacement analogues on childhood asthma and allergies. Previous studies on single and small cohorts had limited statistical power, few investigated analogues BPF and BPS, and even fewer examined atopic outcomes. Our objective was to assess whether prenatal exposures to individual environmental bisphenols (BPA, BPF, BPS) influence risk of childhood asthma, allergic rhinitis, and atopic dermatitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!