More than 500 million people worldwide live with cardiovascular disease (CVD). Health systems today face fundamental challenges in delivering optimal care due to ageing populations, healthcare workforce constraints, financing, availability and affordability of CVD medicine, and service delivery. Digital health technologies can help address these challenges. They may be a tool to reach Sustainable Development Goal 3.4 and reduce premature mortality from non-communicable diseases (NCDs) by a third by 2030. Yet, a range of fundamental barriers prevents implementation and access to such technologies. Health system governance, health provider, patient and technological factors can prevent or distort their implementation. World Heart Federation (WHF) roadmaps aim to identify essential roadblocks on the pathway to effective prevention, detection, and treatment of CVD. Further, they aim to provide actionable solutions and implementation frameworks for local adaptation. This WHF Roadmap for digital health in cardiology identifies barriers to implementing digital health technologies for CVD and provides recommendations for overcoming them.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9414868 | PMC |
http://dx.doi.org/10.5334/gh.1141 | DOI Listing |
Genet Med
December 2024
Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN; Center for Digital Genomic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN. Electronic address:
Purpose: The value of genetic information for improving the performance of clinical risk prediction models has yielded variable conclusions. Many methodological decisions have the potential to contribute to differential results. We performed multiple modeling experiments integrating clinical and demographic data from electronic health records (EHR) with genetic data to understand which decisions may affect performance.
View Article and Find Full Text PDFInt J Bipolar Disord
December 2024
Department for Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt-Goethe University, Frankfurt am Main, Germany.
Background: Attention-deficit/hyperactivity disorder (ADHD) is a common neuro-developmental disorder that often persists into adulthood. Moreover, it is frequently accompanied by bipolar disorder (BD) as well as borderline personality disorder (BPD). It is unclear whether these disorders share underlying pathomechanisms, given that all three are characterized by alterations in affective states, either long or short-term.
View Article and Find Full Text PDFAesthetic Plast Surg
December 2024
Center for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea.
Sci Rep
December 2024
Advanced Research Institute for Digital-Twin Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou, 450046, China.
Traditional hydraulic structures rely on manual visual inspection for apparent integrity, which is not only time-consuming and labour-intensive but also inefficient. The efficacy of deep learning models is frequently constrained by the size of available data, resulting in limited scalability and flexibility. Furthermore, the paucity of data diversity leads to a singular function of the model that cannot provide comprehensive decision support for improving maintenance measures.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmacoepidemiology, Graduate School of Medicine and PublicHealth, Kyoto University, Kyoto, Japan.
Although conservative treatment is commonly used for osteoporotic vertebral fracture (OVF), some patients experience functional disability following OVF. This study aimed to develop prediction models for new-onset functional impairment following admission for OVF using machine learning approaches and compare their performance. Our study consisted of patients aged 65 years or older admitted for OVF using a large hospital-based database between April 2014 and December 2021.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!