Sulfur is essential in plants because of its presence in numerous molecules including the two amino acids, cysteine, and methionine. Cysteine serves also for the synthesis of glutathione and provides sulfur to many other molecules including protein cofactors or vitamins. Plants absorb sulfate from their environment and assimilate it a reductive pathway which involves, respectively, a series of transporters and enzymes belonging to multigenic families. A tight control is needed to adjust each enzymatic step to the cellular requirements because the whole pathway consumes energy and produces toxic/reactive compounds, notably sulfite and sulfide. Glutathione is known to regulate the activity of some intermediate enzymes. In particular, it provides electrons to adenosine 5'-phosphosulfate reductases but also regulates the activity of glutamate-cysteine ligase by reducing a regulatory disulfide. Recent proteomic data suggest a more extended post-translational redox control of the sulfate assimilation pathway enzymes and of some associated reactions, including the synthesis of both sulfur-containing amino acids, cysteine and methionine, and of glutathione. We have summarized in this review the known oxidative modifications affecting cysteine residues of the enzymes involved. In particular, a prominent regulatory role of protein persulfidation seems apparent, perhaps because sulfide produced by this pathway may react with oxidized thiol groups. However, the effect of persulfidation has almost not yet been explored.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9426629PMC
http://dx.doi.org/10.3389/fpls.2022.958490DOI Listing

Publication Analysis

Top Keywords

amino acids
12
enzymes involved
8
sulfate assimilation
8
synthesis sulfur-containing
8
sulfur-containing amino
8
molecules including
8
acids cysteine
8
cysteine methionine
8
enzymes
5
redox regulation
4

Similar Publications

Biological Regulation Studied and with Modified Proteins.

Acc Chem Res

March 2025

Center for BioEnergetics, Biodesign Institute and School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States.

ConspectusProteins and peptides occur ubiquitously in organisms and play key functional roles, as structural elements and catalysts. Their major natural source is ribosomal synthesis, which produces polypeptides from 20 amino acid building blocks. Peptides containing noncanonical amino acids have long been prepared by chemical synthesis, which has provided a wealth of physiologically active compounds.

View Article and Find Full Text PDF

Exploration of a modified pretreatment process coupled with GC-MS/MS for determination of 18 phthalates in edible oils.

Anal Methods

March 2025

Chengdu Institute of Food Inspection, Key Laboratory of Monitoring and Assessment on Novel Food Raw Materials, State Administration for Market Regulation, Fu-Rong Avenue Section 2 No. 10., Wenjiang District, Chengdu 611130, China.

Phthalates (PAEs), which are pollutants that most easily migrate from plastic packages to edible oils, have received increasing attention. In this work, a sample preconditioning method was proposed and explored, involving a single-step extraction using a methanol and ethyl hexanoate mixed solvent, followed by clean-up with a mixed absorbent of graphitic carbon nitride (g-CN) and -propyl ethylenediamine (PSA), for the determination of 18 PAEs in oil samples through GC-MS/MS analysis. The triazine ring structure and conjugated aromatic heterocyclic accumulation structure of g-CN and the amino-rich structure of PSA can provide hydrogen bonds, conjugated π-π interactions, and hydrophobic effects for the removal of interferences such as organic acids, aliphatic acids, and pigments.

View Article and Find Full Text PDF

HOTAIR Participation in Glycolysis and Glutaminolysis Through Lactate and Glutamate Production in Colorectal Cancer.

Cells

March 2025

Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México (UNAM), Tlalnepantla 54090, Mexico.

Metabolic reprogramming plays a crucial role in cancer biology and the mechanisms underlying its regulation represent a promising study area. In this regard, the discovery of non-coding RNAs opened a new regulatory landscape, which is in the early stages of investigation. Using a differential expression model of HOTAIR, we evaluated the expression level of metabolic enzymes, as well as the metabolites produced by glycolysis and glutaminolysis.

View Article and Find Full Text PDF

The crisis of metabolic and mental disorders continues to escalate worldwide. A growing body of research highlights the influence of tryptophan and its metabolites, such as serotonin, beyond their traditional roles in neural signaling. Serotonin acts as a key neurotransmitter within the brain-gut-microbiome axis, a critical bidirectional communication network affecting both metabolism and behavior.

View Article and Find Full Text PDF

Terahertz (THz) waves, a novel type of radiation with quantum and electronic properties, have attracted increasing attention for their effects on the nervous system. Spatial working memory, a critical component of higher cognitive function, is coordinated by brain regions such as the infralimbic cortex (IL) region of the medial prefrontal cortex and the ventral cornu ammonis 1 (vCA1) of hippocampus. However, the regulatory effects of THz waves on spatial working memory and the underlying mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!