Trade-Off between Redox Potential and the Strength of Electrochemical CO Capture in Quinones.

J Phys Chem C Nanomater Interfaces

Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.

Published: August 2022

Electrochemical carbon dioxide capture recently emerged as a promising alternative approach to conventional energy-intensive carbon-capture methods. A common electrochemical capture approach is to employ redox-active molecules such as quinones. Upon electrochemical reduction, quinones become activated for the capture of CO through a chemical reaction. A key disadvantage of this method is the possibility of side-reactions with oxygen, which is present in almost all gas mixtures of interest for carbon capture. This issue can potentially be mitigated by fine-tuning redox potentials through the introduction of electron-withdrawing groups on the quinone ring. In this article, we investigate the thermodynamics of the electron transfer and chemical steps of CO capture in different quinone derivatives with a range of substituents. By combining density functional theory calculations and cyclic voltammetry experiments, we support a previously described trade-off between the redox potential and the strength of CO capture. We show that redox potentials can readily be tuned to more positive values to impart stability to oxygen, but significant decreases in CO binding free energies are observed as a consequence. Our calculations support this effect for a large series of anthraquinones and benzoquinones. Different trade-off relationships were observed for the two classes of molecules. These trade-offs must be taken into consideration in the design of improved redox-active molecules for electrochemical CO capture.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421892PMC
http://dx.doi.org/10.1021/acs.jpcc.2c03752DOI Listing

Publication Analysis

Top Keywords

electrochemical capture
12
trade-off redox
8
redox potential
8
potential strength
8
capture
8
quinones electrochemical
8
redox-active molecules
8
redox potentials
8
electrochemical
5
strength electrochemical
4

Similar Publications

Photoexcited Electro-Driven Reactive Oxygen Species Channeling for Precise Extraction of Biomarker Information from Tumor Interstitial Fluid.

Small

January 2025

Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, No. 174 Shazheng Road, Chongqing, 400044, China.

Direct electrochemical detection of miRNA biomarkers in tumor tissue interstitial fluid (TIF) holds great promise for adjuvant therapy for tumors in the perioperative period, yet is limited by background interference and weak signal. Herein, a wash-free and separation-free miRNA biosensor based on photoexcited electro-driven reactive oxygen channeling analysis (LEOCA) is developed to solve the high-fidelity detection in physiological samples. In the presence of miRNA, nanoacceptors (ultrasmall-size polydopamine, uPDA) are responsively assembled on the surface of nanodonors (zirconium metal-organic framework, ZrMOF) to form core-satellite aggregates.

View Article and Find Full Text PDF

All-solid-state lithium metal batteries hold promise for meeting the industrial demands for high energy density and safety. However, voids are formed at the lithium metal anode/solid-state electrolyte interface during stripping, deteriorating interface contact and reducing the cycle stability. Stack pressure and operating temperature are effective methods to activate creep deformation in lithium metal, promoting interfacial deformation and alleviating void-induced interface issues.

View Article and Find Full Text PDF

On-site biosignal amplification using a single high-spin conjugated polymer.

Nat Commun

January 2025

National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Materials Science and Engineering, Peking University, Beijing, China.

On-site or in-sensor biosignal transduction and amplification can offer several benefits such as improved signal quality, reduced redundant data transmission, and enhanced system integration. Ambipolar organic electrochemical transistors (OECTs) are promising for this purpose due to their high transconductance, low operating voltage, biocompatibility, and suitability for miniaturized amplifier design. However, limitations in material performance and stability have hindered their application in biosignal amplification.

View Article and Find Full Text PDF

Early detection of hepatitis C virus (HCV) infection is crucial for eliminating this silent killer, especially in resource-limited settings. HCV core antigen (HCVcAg) represents a promising alternative to the current "gold standard" HCV RNA assays as an active viremia biomarker. Herein, a highly sensitive electrochemical magneto-immunosensor for the HCVcAg was developed.

View Article and Find Full Text PDF

In soil polluted with benzene, toluene, ethylbenzene, and xylenes (BTEX), oxygen is rapidly depleted by aerobic respiration, creating a redox gradient across the plume. Under anaerobic conditions, BTEX biodegradation is then coupled with fermentation and methanogenesis. This study aimed to characterize this multi-step process, focusing on the interactions and functional roles of key microbial groups involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!