AI Article Synopsis

  • Cubital tunnel syndrome is linked to elbow deformities like cubitus valgus and varus, with research investigating how these conditions affect the strain on the ulnar nerve in cadaver specimens.
  • Using fresh-frozen cadaver arms, researchers measured ulnar nerve strain at different angles of elbow flexion after creating specific elbow deformities through surgical procedures.
  • Results showed that while strain increased significantly with elbow flexion across all models, the cubitus varus deformity led to reduced strain on the ulnar nerve compared to the normal and cubitus valgus models.

Article Abstract

Background: Cubital tunnel syndrome can be caused by overtraction and dynamic compression in elbow deformities. The extent to which elbow deformities contribute to ulnar nerve strain is unknown. Here, we investigated ulnar nerve strain caused by cubitus valgus/varus deformity using fresh-frozen cadavers.

Methods: We used six fresh-frozen cadaver upper extremities. A strain gauge was placed on the ulnar nerve 2 cm proximal to the medial epicondyle of the humerus. For the elbow deformity model, osteotomy was performed at the distal humerus, and plate fixation was performed to create cubitus valgus/varus deformities (10°, 20°, and 30°). Ulnar nerve strain caused by elbow flexion (0-125°) was measured in both the normal and deformity models. The strains at different elbow flexion angles within each model were compared, and the strains at elbow extension and at maximum elbow flexion were compared between the normal model and each elbow deformity model. However, in the cubitus varus model, the ulnar nerve deflected more than the measurable range of the strain gauge; elbow flexion of 60° or more were considered effective values. Statistical analysis of the strain values was performed with Friedman test, followed by the Williams' test (the Shirley‒Williams' test for non-parametric analysis).

Results: In all models, ulnar nerve strain increased significantly from elbow extension to maximal flexion (control: 13.2%; cubitus valgus 10°: 13.6%; cubitus valgus 20°: 13.5%; cubitus valgus 30°: 12.2%; cubitus varus 10°: 8.3%; cubitus varus 20°: 8.2%; cubitus varus 30°: 6.3%, P < 0.001). The control and cubitus valgus models had similar values, but the cubitus varus models revealed that this deformity caused ulnar nerve relaxation.

Conclusions: Ulnar nerve strain significantly increased during elbow flexion. No significant increase in strain 2 cm proximal to the medial epicondyle was observed in the cubitus valgus model. Major changes may have been observed in the measurement behind the medial epicondyle. In the cubitus varus model, the ulnar nerve was relaxed during elbow extension, but this effect was reduced by elbow flexion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434914PMC
http://dx.doi.org/10.1186/s12891-022-05786-9DOI Listing

Publication Analysis

Top Keywords

ulnar nerve
28
nerve strain
20
elbow flexion
16
cubitus varus
16
cubitus valgus/varus
12
cubitus valgus
12
elbow
11
cubitus
10
strain
8
valgus/varus deformity
8

Similar Publications

Mapping the myomagnetic field of a straight and easily accessible muscle after electrical stimulation using triaxial optically pumped magnetometers (OPMs) to assess potential benefits for magnetomyography (MMG). Approach: Six triaxial OPMs were arranged in two rows with three sensors each along the abductor digiti minimi (ADM) muscle. The upper row of sensors was inclined by 45° with respect to the lower row and all sensors were aligned closely to the skin surface without direct contact.

View Article and Find Full Text PDF

The canine elbow joint is innervated by four nerves: the musculocutaneous, median, radial, and ulnar nerves. There is little data in the veterinary literature examining the course of the articular branches of those nerves. There is also no agreement as to their anatomical location in the joint capsule nor to their number.

View Article and Find Full Text PDF

Background: Entrapment neuropathies, marked by nerve compression at various anatomical sites, can be effectively managed using conservative approaches like injections. Dextrose 5 % water injection has emerged as a potential therapy by reducing inflammation and promoting tissue regeneration. We aimed to evaluate dextrose injection's efficacy in treating entrapment neuropathies in upper extremities.

View Article and Find Full Text PDF

Background: There has been an increasing interest in elbow hemiarthroplasty to circumvent the problems with total elbow arthroplasty for comminuted distal humerus fractures in the elderly. The primary aim of the study is to assess the mid-term clinical and radiological outcomes of patients undergoing TEA and hemiarthroplasty for distal humerus fractures.

Methods: Retrospective analysis of data for patients undergoing hemiarthroplasty for distal humerus fractures (OTA- C3 Comminuted total articular fractures) was done.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!