Background: Ray-finned fishes (Actinopterygii) perceive their environment through a range of sensory modalities, including olfaction. Anatomical diversity of the olfactory organ suggests that olfaction is differentially important among species. To explore this topic, we studied the evolutionary dynamics of the four main gene families (OR, TAAR, ORA/VR1 and OlfC/VR2) coding for olfactory receptors in 185 species of ray-finned fishes.

Results: The large variation in the number of functional genes, between 28 in the ocean sunfish Mola mola and 1317 in the reedfish Erpetoichthys calabaricus, is the result of parallel expansions and contractions of the four main gene families. Several ancient and independent simplifications of the olfactory organ are associated with massive gene losses. In contrast, Polypteriformes, which have a unique and complex olfactory organ, have almost twice as many olfactory receptor genes as any other ray-finned fish.

Conclusions: We document a functional link between morphology of the olfactory organ and richness of the olfactory receptor repertoire. Further, our results demonstrate that the genomic underpinning of olfaction in ray-finned fishes is heterogeneous and presents a dynamic pattern of evolutionary expansions, simplifications, and reacquisitions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9438307PMC
http://dx.doi.org/10.1186/s12915-022-01397-xDOI Listing

Publication Analysis

Top Keywords

olfactory organ
20
ray-finned fishes
12
receptor repertoire
8
main gene
8
gene families
8
olfactory receptor
8
olfactory
7
organ
5
ray-finned
5
coevolution olfactory
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!