Effect of louver baffles installation on hydrodynamics of bubbling fluidization in biomass gasifier.

Sci Rep

Advanced Computational Fluid Dynamics Research Unit, Chulalongkorn University, Phayathai Road, Wangmai, Pathumwan, Bangkok, 10330, Thailand.

Published: September 2022

Biomass gasification by a bubbling bed gasifier has been a promising process to produce fuels from biomass. However, the performance is limited by gas aggregation in the gasifier. In this study, CFD simulations were used to investigate hydrodynamics in bubbling bed gasifiers installed with multilayer louver baffles to understand the roles of baffles on different aspects including gas aggregation, biomass-bed mixing, gas-biomass contact, and pressure drop. The designed baffles could reduce the gas aggregation particularly when the biomass is fed at the middle of the baffle zone. The baffles could enhance the biomass-bed mixing and the gas-biomass contact throughout the bed except near the biomass inlet. The installation of baffles would not significantly affect the overall pressure drop but slightly affect at the mid-level of the bed. For the system in this study, the baffled gasifier with biomass feeding at the middle of the baffled zone and the gas inlet velocity of 0.7 m/s could provide the best performance in term of hydrodynamics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9437107PMC
http://dx.doi.org/10.1038/s41598-022-19120-9DOI Listing

Publication Analysis

Top Keywords

gas aggregation
12
louver baffles
8
hydrodynamics bubbling
8
gasifier biomass
8
bubbling bed
8
biomass-bed mixing
8
mixing gas-biomass
8
gas-biomass contact
8
pressure drop
8
biomass
6

Similar Publications

Metal-organic gels (MOGs) are a type of supramolecular complex that have become highly intriguing due to their synergistic combination of inorganic and organic elements. We report the synthesis and characterization of a Ni-directed supramolecular gel using chiral amino acid L-DOPA (3,4-dihydroxy phenylalanine) containing ligand, which coordinates with Ni(II) to form metal-organic gels with exceptional properties. The functional Ni(II)-gel was synthesized by heating nickel(II) acetate hexahydrate and the L-DOPA containing ligand in DMSO at 70 °C.

View Article and Find Full Text PDF

Nanofluids have the capacity to reduce interfacial tension (IFT) of crude oil and water for enhanced oil recovery (EOR) operations, but traditional nanoparticles are limited in tight reservoirs due to their inappropriate size for micro-nano pores and their tendency to aggregate. In this paper, Graphene Quantum Dots (GQDs) with simple and favorable properties are developed, and their performance and mechanism for reducing IFT are evaluated. The paper also aims to explore the effects of GQD precursor type, synthesis duration, and molar percentages of precursors on reducing IFT.

View Article and Find Full Text PDF

Background: Despite evidence from experimental studies linking some petroleum hydrocarbons to markers of immune suppression, limited epidemiologic research exists on this topic.

Objective: The aim of this cross-sectional study was to examine associations of oil spill related chemicals (benzene, toluene, ethylbenzene, xylene, and n-hexane (BTEX-H)) and total hydrocarbons (THC) with immune-related illnesses as indicators of potential immune suppression.

Methods: Subjects comprised 8601 Deepwater Horizon (DWH) oil spill clean-up and response workers who participated in a home visit (1-3 years after the DWH spill) in the Gulf Long-term Follow-up (GuLF) Study.

View Article and Find Full Text PDF

With the continuous clamor for a reduction in embodied carbon in cement, rapid solution to climate change, and reduction to resource depletion, studies into substitute binders become crucial. These cementitious binders can potentially lessen our reliance on cement as the only concrete binder while also improving concrete functional properties. Finer particles used in cement microstructure densify the pore structure of concrete and enhance its performance properties.

View Article and Find Full Text PDF

Over the past decade, there has been considerable attention on mitigating enteric methane (CH) emissions from ruminants through the utilization of antimethanogenic feed additives (AMFA). Administered in small quantities, these additives demonstrate potential for substantial reductions of methanogenesis. Mathematical models play a crucial role in comprehending and predicting the quantitative impact of AMFA on enteric CH emissions across diverse diets and production systems.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!