The current understanding of lactate extends from its origins as a byproduct of glycolysis to its role in tumor metabolism, as identified by studies on the Warburg effect. The lactate shuttle hypothesis suggests that lactate plays an important role as a bridging signaling molecule that coordinates signaling among different cells, organs and tissues. Lactylation is a posttranslational modification initially reported by Professor Yingming Zhao's research group in 2019. Subsequent studies confirmed that lactylation is a vital component of lactate function and is involved in tumor proliferation, neural excitation, inflammation and other biological processes. An indispensable substance for various physiological cellular functions, lactate plays a regulatory role in different aspects of energy metabolism and signal transduction. Therefore, a comprehensive review and summary of lactate is presented to clarify the role of lactate in disease and to provide a reference and direction for future research. This review offers a systematic overview of lactate homeostasis and its roles in physiological and pathological processes, as well as a comprehensive overview of the effects of lactylation in various diseases, particularly inflammation and cancer.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434547 | PMC |
http://dx.doi.org/10.1038/s41392-022-01151-3 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Cardiology, Affiliated Hospital of Jiangnan University, 214122 Wuxi, Jiangsu, China.
Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.
View Article and Find Full Text PDFViruses
December 2024
Clinical Department of Anesthesiology and Intensive Therapy, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland.
Background: This study compares organ dysfunction, treatment strategies, and unfavorable outcome rates between pregnant and nonpregnant women admitted to the ICU with severe COVID-19, highlighting the increased susceptibility of pregnant women to respiratory infections due to physiological changes.
Methods: A retrospective, age-matched study was conducted at a referral center specializing in critical care for pregnant women. Data from 14 pregnant/postpartum and 11 nonpregnant women were analyzed at ICU admission and on days 3, 5, and 7.
Pharmaceutics
January 2025
Programa de Pós-Graduação em Pesquisa Translacional em Fármacos e Medicamentos (PPG-PTFM), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil.
Amphotericin B (AmB) is a commonly utilized antifungal agent, which is also recommended for the treatment of certain neglected tropical diseases, including leishmaniasis. However, its clinical application is constrained because of its poor oral bioavailability and adverse effects, prompting the investigation of alternative drug delivery systems. Polymeric nanoparticles (PNPs) have gained attention as a potential drug delivery vehicle, providing advantages such as sustained release and enhanced bioavailability, and could have potential as AmB carriers.
View Article and Find Full Text PDFPharmaceutics
January 2025
MyBiotech GmbH, Industriestraße 1B, 66802 Überherrn, Germany.
: Drug delivery systems (DDSs) offer efficient treatment solutions to challenging diseases such as central nervous system (CNS) diseases by bypassing biological barriers such as the blood-brain barrier (BBB). Among DDSs, polymeric nanoparticles (NPs), particularly poly(lactic-co-glycolic acid) (PLGA) NPs, hold an outstanding position due to their biocompatible and biodegradable qualities. Despite their potential, the translation of PLGA NPs from laboratory-scale production to clinical applications remains a significant challenge.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA.
: The co-formulation of active pharmaceutical ingredients (APIs) is a growing strategy in biopharmaceutical development, particularly when it comes to improving solubility and bioavailability. This study explores a co-precipitation method to prepare co-formulated crystals of griseofulvin (GF) and dexamethasone (DXM), utilizing nanostructured, functionalized polylactic glycolic acid (PLGA) as a solubility enhancer. : An antisolvent precipitation technique was employed to incorporate PLGA at a 3% concentration into the co-formulated GF and DXM, referred to as DXM-GF-PLGA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!