Calibrating the Sabine and Eyring formulas.

J Acoust Soc Am

Acoustics Lab, Department of Signal Processing and Acoustics, Aalto University, FI-02150 Espoo, Finland.

Published: August 2022

Of the many available reverberation time prediction formulas, Sabine's and Eyring's equations are still widely used. The assumptions of homogeneity and isotropy of sound energy during the decay associated with those models are usually recognized as a reason for lack of agreement between predictions and measurements. At the same time, the inaccuracy in the estimation of the sound-absorption coefficient adds to the uncertainty of calculations. This paper shows that the error of incorrectly assumed sound absorption is more detrimental to the prediction precision than the inherent error in the formulas themselves. The proposed absorption calibration procedure reduces the differences between the measured and predicted reverberation time values, showing that an accuracy within ±10% from the target reverberation time values can be achieved regardless of the absorption distribution in a room. The paper also discusses the oft neglected air absorption of sound, which may introduce considerable bias to the measurement results. The need for an air-absorption compensation procedure is highlighted, and a method for the estimation of its parameters in octave bands is proposed and compared with other approaches. The results of this study provide justification for the use of the Sabine and Eyring formulas for reverberation time predictions.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0013575DOI Listing

Publication Analysis

Top Keywords

reverberation time
16
sabine eyring
8
eyring formulas
8
formulas reverberation
8
time values
8
time
5
calibrating sabine
4
formulas
4
reverberation
4
time prediction
4

Similar Publications

Reconstruction of reverberant sound fields over large spatial domains.

J Acoust Soc Am

January 2025

Acoustic Technology, Department of Electrical & Photonics Engineering, Technical University of Denmark, Kongens Lyngby, Denmark.

Characterising acoustic fields in rooms is challenging due to the complexity of data acquisition. Sound field reconstruction methods aim at predicting the acoustic quantities at positions where no data are available, incorporating generalisable physical priors of the sound in a room. This study introduces a model that exploits the general time structure of the room impulse response, where a wave-based expansion addresses the direct sound and early reflections, localising their apparent origin, and kernel methods are applied to the late part.

View Article and Find Full Text PDF

Objectives: One important aspect in facilitating language access for children with hearing loss (HL) is the auditory environment. An optimal auditory environment is characterized by high signal to noise ratios (SNRs), low background noise levels, and low reverberation times. In this study, the authors describe the auditory environment of early intervention groups specifically equipped for young children with HL.

View Article and Find Full Text PDF

Individual differences elucidate the perceptual benefits associated with robust temporal fine-structure processing.

Proc Natl Acad Sci U S A

January 2025

Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA 15213.

Article Synopsis
  • The auditory system can precisely track quick changes in sound, but the importance of this ability (temporal fine structure or TFS) for hearing is still debated.
  • Researchers studied 200 participants to see how TFS sensitivity affects speech perception in noisy environments.
  • Results showed that better TFS sensitivity helped more with listening in reverberant spaces and led to quicker responses, suggesting it plays a key role in everyday hearing experiences.
View Article and Find Full Text PDF

Neuronal activity in the highly organized networks of the central nervous system is the vital basis for various functional processes, such as perception, motor control, and cognition. Understanding interneuronal connectivity and how activity is regulated in the neuronal circuits is crucial for interpreting how the brain works. Multi-electrode arrays (MEAs) are particularly useful for studying the dynamics of neuronal network activity and their development as they allow for real-time, high-throughput measurements of neural activity.

View Article and Find Full Text PDF

Ultrasound is an excellent way to acquire data that reveal useful information about systems operating in harsh environments, which may include elevated temperature, ionizing radiation, and aggressive chemicals. The effects of harsh environments on piezoelectric materials have been studied in much more depth than the other aspects of ultrasonic transducers used in pulse-echo mode. Therefore, finite element simulations and laboratory experiments are used to demonstrate the unique characteristics of pulse-echo immersion testing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!