A velocity map imaging spectrometer for measuring absolute differential cross sections for ion-induced electron emission from molecules.

Rev Sci Instrum

Centre de Recherche sur les Ions, les Matériaux et la Photonique (CIMAP), UMR 6252, Normandie Université, ENSICAEN, UNICAEN, CEA, CNRS, 14000 Caen, France.

Published: August 2022

In this paper, we present a newly developed crossed beam experimental setup that utilizes the velocity map imaging (VMI) technique to simultaneously measure both the kinetic energy and emission angle of electrons emitted from atoms or molecules upon ion collision. The projectile ion beam with keV to MeV kinetic energy orthogonally crosses the neutral target beam produced by an effusion cell. The emitted electrons are extracted and analyzed by a multi-electrode VMI spectrometer. By monitoring the target density, the projectile ion beam intensity, and the beams' overlap, we are able to measure absolute differential cross sections for collision-induced electron emission from molecules. The characterization of the setup and the methodology will be presented as well as first results for electron emission from uracil upon 0.98 MeV/u C collision.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0091927DOI Listing

Publication Analysis

Top Keywords

electron emission
12
velocity map
8
map imaging
8
absolute differential
8
differential cross
8
cross sections
8
emission molecules
8
kinetic energy
8
projectile ion
8
ion beam
8

Similar Publications

Wu-Mei-Wan enhances brown adipose tissue function and white adipose browning in obese mice via upregulation of HSF1.

Chin Med

January 2025

Department of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.

Background: This research aims to explore the anti-obesity potential of Wu-Mei-Wan (WMW), particularly its effects on adipose tissue regulation in obese mice induced by a high-fat diet (HFD). The study focuses on understanding the role of heat shock factor 1 (HSF1) in mediating these effects.

Methods: HFD-induced obese mice were treated with WMW.

View Article and Find Full Text PDF

Aromatic π-complexes play a significant role in various chemical and biological systems, significantly influencing their physico-chemical and spectroscopic properties. The identification of new compounds capable of π-complex formation is therefore of great interest. The paper investigates the fluorescent properties of 1,5-diisocyanonaphthalene (1,5-DIN) in different aromatic solvents, demonstrating its potential for distinguishing between aromatics based on emission spectra.

View Article and Find Full Text PDF

The pressing necessity to mitigate climate change and decrease greenhouse gas emissions has driven the advancement of heterostructure-based photocatalysts for effective CO₂ reduction. This study introduces a novel heterojunction photocatalyst formed by integrating potassium-doped polymeric carbon nitride (KPCN) with metallic Zn₃N₂, synthesized via a microwave-assisted molten salt method. The resulting Schottky contact effectively suppresses the reverse diffusion of electrons, achieving spatial separation of photogenerated charges and prolonging their lifetime, which significantly enhances photocatalytic activity and efficiency.

View Article and Find Full Text PDF

Paddy fields are a major anthropogenic source of global methane (CH) emissions, a powerful greenhouse gas (GHG). This study aimed at gaining insights of different organic and inorganic conductive materials (CMs) - biochar, fungal melanin, and magnetite - to mitigate CH emissions, and on their influence on key microbial populations, mimicking the postharvest season throughout the degradation of rice straw in microcosms under anaerobic conditions encompassing postharvest paddy rice soils from the Ebro Delta, Spain. Results showed that fungal melanin was the most effective CM, significantly reducing CH emissions by 29 %, while biochar amendment also reduced emissions by 10 %.

View Article and Find Full Text PDF

Degradable Theranostic Polyurethane for Macrophage-Targeted Antileishmanial Drug Delivery.

Biomacromolecules

January 2025

Polymer Research Centre and Centre for Advanced Functional Materials, Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Nadia, Mohanpur 741246, West Bengal, India.

The present investigation aims to develop a reactive oxygen species (ROS) and esterase-responsive biodegradable mannosylated polyurethane to effectively deliver the encapsulated antileishmanial drug amphotericin B (AmB) selectively to infected macrophage cells. Owing to suitable amphiphilic balance, the as-synthesized glycosylated polyurethane () with aryl boronic ester-based diol () moiety as ROS-trigger, water-soluble mannose pendants, and fluorescent 4,4-difluoro-4-bora-3a,4a-diaza--indacene (BODIPY) chain ends for bioimaging formed nanoaggregates in an aqueous medium as confirmed by H NMR spectroscopy, dynamic light scattering (DLS), field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), and critical aggregation concentration (CAC) measurements. Aided by two endogenous stimuli present in phagolysosome, ROS and esterase, AmB-encapsulated polymeric nanoaggregates as drug delivery vehicles achieved an efficient reduction of both and intracellular amastigote burden compared to the free AmB.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!