Here, we describe a new synchrotron X-ray Fluorescence (XRF) imaging instrument with an integrated High Energy Fluorescence Detection X-ray Absorption Spectroscopy (HERFD-XAS) spectrometer at the Stanford Synchrotron Radiation Lightsource at beamline 6-2. The X-ray beam size on the sample can be defined via a range of pinhole apertures or focusing optics. XRF imaging is performed using a continuous rapid scan system with sample stages covering a travel range of 250 × 200 mm, allowing for multiple samples and/or large samples to be mounted. The HERFD spectrometer is a Johann-type with seven spherically bent 100 mm diameter crystals arranged on intersecting Rowland circles of 1 m diameter with a total solid angle of about 0.44% of 4π sr. A wide range of emission lines can be studied with the available Bragg angle range of ∼64.5°-82.6°. With this instrument, elements in a sample can be rapidly mapped via XRF and then selected features targeted for HERFD-XAS analysis. Furthermore, utilizing the higher spectral resolution of HERFD for XRF imaging provides better separation of interfering emission lines, and it can be used to select a much narrower emission bandwidth, resulting in increased image contrast for imaging specific element species, i.e., sparse excitation energy XAS imaging. This combination of features and characteristics provides a highly adaptable and valuable tool in the study of a wide range of materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9392580 | PMC |
http://dx.doi.org/10.1063/5.0095229 | DOI Listing |
Int J Comput Assist Radiol Surg
January 2025
Department of Medical Biophysics, University of Toronto, Toronto, Canada.
ACS Nano
December 2024
Aix Marseille Univ, INSERM, SSA, MCT, 27 Bd Jean Moulin, Marseille 13005, France.
Bacterial resistance is a major public health challenge. In Gram-negative bacteria, the synergy between multidrug efflux pumps and outer membrane impermeability determines the intracellular concentration of antibiotics. Consequently, it also dictates antibiotic activity on their respective targets.
View Article and Find Full Text PDFSwiss J Geosci
December 2024
Department of Surface Waters Research and Management, Eawag, Überlandstrasse 133, Dübendorf, 8600 Switzerland.
Unlabelled: Industrial activities of a silk dyeing factory in Thalwil, on the shore of Lake Zurich, Switzerland, caused extreme Sn contamination of lake sediments. In this study, we determine the contamination source, spread, and age using a multiproxy approach. We used X-ray fluorescence spectroscopy (XRF) core scanning and further geochemical analyses to assess the contamination spreading and thickness in the sedimentary column.
View Article and Find Full Text PDFTalanta
December 2024
State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Laser Spectroscopy, Shanxi University, Taiyuan, 030006, China; Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
The combined application of near-infrared spectroscopy (NIRS) and X-ray fluorescence spectroscopy (XRF) has achieved remarkable results in coal quality analysis by leveraging NIRS's sensitivity to organic compounds and XRF's reliability for inorganic composition. However, variations in particle size distribution negatively affect the diffuse reflectance of NIRS and the fluorescence signal intensities of XRF, leading to decreased accuracy and repeatability in predictions. To address this issue, this study innovatively proposes a particle size correction method that integrates image processing and deep learning.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
Pohang Accelerator Laboratory (PAL), POSTECH, Pohang 37673, Republic of Korea.
X-ray fluorescence (XRF) is widely used to analyze elemental distributions in samples. Micro-XRF (µ-XRF), the most basic conventional XRF technique, offers good spatial resolution through precise 2D scanning with a micrometre-sized X-ray source. Recently, synchrotron based XRF analysis platforms have achieved nano-XRF with highly focused X-rays using polycapillary optics or mirrors, leveraging the excellent coherence of synchrotron radiation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!