Despite a better understanding of the underlying pathogenesis of heart failure (HF), pharmacotherapy, surgical, and percutaneous interventions do not prevent disease progression in all patients, and a significant proportion of patients end up requiring advanced therapies. Machine learning (ML) is gaining wider acceptance in cardiovascular medicine because of its ability to incorporate large, complex, and multidimensional data and to potentially facilitate the creation of predictive models not constrained by many of the limitations of traditional statistical approaches. With the coexistence of "big data" and novel advanced analytic techniques using ML, there is ever-increasing research into applying ML in the context of HF with the goal of improving patient outcomes. Through this review, the authors describe the basics of ML and summarize the existing published reports regarding contemporary applications of ML in device therapy for HF while highlighting the limitations to widespread implementation and its future promises.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jchf.2022.06.011DOI Listing

Publication Analysis

Top Keywords

contemporary applications
8
machine learning
8
device therapy
8
applications machine
4
learning device
4
therapy heart failure
4
heart failure despite
4
despite better
4
better understanding
4
understanding underlying
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!