Priming of soil organic carbon mineralization and its temperature sensitivity in response to vegetation restoration in a karst area of Southwest China.

Sci Total Environ

Environmental and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China; Hainan Provincial Key Laboratory of Tropical Eco-cycle Agriculture, Haikou, Hainan, China; Agricultural Environmental Science Observation and Experiment Station, Ministry of Agriculture, Danzhou, Hainan, China. Electronic address:

Published: December 2022

Plant residue input alters native soil organic carbon (SOC) mineralization through the priming effect, which strongly controls C sequestration during vegetation restoration. However, the effects of different vegetation types on SOC priming and the underlying microbial mechanisms due to global warming are poorly understood. To elucidate these unknowns, the current study quantified soil priming effects using C-labeled maize residue amendments and analyzed the community structure and abundances in the soils of a vegetation succession gradient (maize field (MF), grassland (GL), and secondary forest (SF)) from a karst region under two incubation temperatures (15 °C and 25 °C). Results revealed that after 120 d of incubation, vegetation restoration increased the soil priming effects. Compared to MF, the priming effects of SF at 15 °C and 25 °C increased by 142.36 % and 161.09 %, respectively. This may be attributed to a high C/N ratio and low-N availability (NO), which supports the "microbial nitrogen mining" theory. Variations in soil priming were linked to changes in microbial properties. Moreover, with vegetation restoration, the relative abundance of Actinobacteria (copiotrophs) increased, while Ascomycota (oligotrophs) decreased, which accelerated native SOC decomposition. Co-occurrence network analysis indicated that the cooperative interactions of co-existing keystone taxa may facilitate SOC priming. Furthermore, structural equation modeling (SEM) indicated that changes in the priming effects were directly related to the fungal Shannon index and microbial biomass C (MBC), which were affected by soil C/N and NO. Warming significantly decreased soil priming, which may be attributed to the increase in microbial respiration (qCO) and decreased MBC. The temperature sensitivity (Q) of SOC mineralization was higher after residue amendment, but significant differences were not detected among the vegetation types. Collectively, our results indicated that the intensity of priming effects was dependent on vegetation type and temperature. Microbial community alterations and physicochemical interactions played important roles in SOC decomposition and sequestration.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2022.158400DOI Listing

Publication Analysis

Top Keywords

priming effects
20
vegetation restoration
16
soil priming
16
priming
11
soil organic
8
organic carbon
8
temperature sensitivity
8
vegetation
8
soc mineralization
8
vegetation types
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!