Accurate prediction of DNA-protein binding (DPB) is of great biological significance for studying the regulatory mechanism of gene expression. In recent years, with the rapid development of deep learning techniques, advanced deep neural networks have been introduced into the field and shown to significantly improve the prediction performance of DPB. However, these methods are primarily based on the DNA sequences measured by the ChIP-seq technology, failing to consider the possible partial variations of the motif sequences and errors of the sequencing technology itself. To address this, we propose a novel computational method, termed MSDenseNet, which combines a new fault-tolerant coding (FTC) scheme with the dense connectional deep neural networks. Three important factors can be attributed to the success of MSDenseNet: First, MSDenseNet utilizes a powerful feature representation approach, which transforms the raw DNA sequence into fusion coding using the fault-tolerant feature sequence; Second, in terms of network structure, MSDenseNet uses a multi-scale convolution within the dense layer and the multi-scale convolution preceding the dense block. This is shown to be able to significantly improve the network performance and accelerate the network convergence speed, and third, building upon the advanced deep neural network, MSDenseNet is capable of effectively mining the hidden complex relationship between the internal attributes of fusion sequence features to enhance the prediction of DPB. Benchmarking experiments on 690 ChIP-seq datasets show that MSDenseNet achieves an average AUC of 0.933 and outperforms the state-of-the-art method. The source code of MSDenseNet is available at https://github.com/csbio-njust-edu/msdensenet. The results show that MSDenseNet can effectively predict DPB. We anticipate that MSDenseNet will be exploited as a powerful tool to facilitate a more exhaustive understanding of DNA-binding proteins and help toward their functional characterization.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2022.114878 | DOI Listing |
Alzheimers Dement
December 2024
Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Background: Dementia poses a significant global crisis, yet 60% of cases go undetected, particularly among specific sub-populations. Timely diagnosis is crucial for implementing early intervention strategies. Challenges of current screening tools (e.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
The accuracy and efficiency of a coarse-grained (CG) force field are pivotal for high-precision molecular simulations of large systems with complex molecules. We present an automated mapping and optimization framework for molecular simulation (AMOFMS), which is designed to streamline and improve the force field optimization process. It features a neural-network-based mapping function, DSGPM-TP (deep supervised graph partitioning model with type prediction).
View Article and Find Full Text PDFJ Magn Reson Imaging
January 2025
Nurturing Center of Jiangsu Province for State Laboratory of AI Imaging & Interventional Radiology, Department of Radiology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China.
Pancreatic ductal adenocarcinoma (PDAC) is the deadliest malignant tumor, with a grim 5-year overall survival rate of about 12%. As its incidence and mortality rates rise, it is likely to become the second-leading cause of cancer-related death. The radiological assessment determined the stage and management of PDAC.
View Article and Find Full Text PDFNAR Genom Bioinform
March 2025
Department of Molecular Genetics, Groningen, Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands.
σ serves as an unconventional sigma factor with a distinct mechanism of transcription initiation, which depends on the involvement of a transcription activator. This unique sigma factor σ is indispensable for orchestrating the transcription of genes crucial to nitrogen regulation, flagella biosynthesis, motility, chemotaxis and various other essential cellular processes. Currently, no comprehensive tools are available to determine σ promoters and regulon in bacterial genomes.
View Article and Find Full Text PDFJ Surg (Lisle)
November 2024
Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
Purpose: Appropriate opioid management is crucial to reduce opioid overdose risk for ICU surgical patients, which can lead to severe complications. Accurately predicting postoperative opioid needs and understanding the associated factors can effectively guide appropriate opioid use, significantly enhancing patient safety and recovery outcomes. Although machine learning models can accurately predict postoperative opioid needs, lacking interpretability hinders their adoption in clinical practice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!