Divergent substrate specificities and regioselectivities of three lipase isoforms from Cordyceps militaris: Combinatorial advantages for entomopathogenicity and prospects as biocatalysts.

Enzyme Microb Technol

Department of Agricultural Biotechnology, Seoul National University, Seoul 08826, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Republic of Korea; Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul 08826, Republic of Korea; Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Published: November 2022

Cordyceps militaris, an entomopathogenic Cordyceps mushroom, is a crucial ethnopharmacological agricultural product with applications in traditional oriental remedies in East Asia. Since lipases are reported to serve as key enzymatic equipment for entomopathogenic fungi during the host infection, the presence of various lipases with different biochemical features in C. militaris was elucidated. Three lipases from C. militaris (CML) of 60-70 kDa were isolated according to protein hydrophobicity; isoform relationships were identified by peptide mapping using liquid chromatography-electrospray ionization-tandem mass spectrometry. The CML isoforms exhibited distinct substrate specificities, which were related to the hydrophobicity of each isoform. Furthermore, the integral stereoselectivity of each lipase towards trioleoylglycerol diverged into two classes (sn-1,3 and sn-2 regioselectivity) that are rare in canonical fungal lipases. Overall, our results demonstrate that C. militaris secretes lipase isoforms with cocktail-like enzyme functions that may contribute to the entomopathogenic life cycle of C. militaris. Each CML isoform has distinct advantages for biocatalyst applications in the food and oleochemical industries.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.enzmictec.2022.110117DOI Listing

Publication Analysis

Top Keywords

substrate specificities
8
lipase isoforms
8
cordyceps militaris
8
militaris cml
8
hydrophobicity isoform
8
militaris
6
divergent substrate
4
specificities regioselectivities
4
regioselectivities three
4
three lipase
4

Similar Publications

A Novel Screening System to Characterize and Engineer Quorum Quenching Lactonases.

Biotechnol Bioeng

January 2025

Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, St. Paul, Minnesota, USA.

N-acyl l-homoserine lactones are signaling molecules used by numerous bacteria in quorum sensing. Some bacteria encode lactonases, which can inactivate these signals. Lactonases were reported to inhibit quorum sensing-dependent phenotypes, including virulence and biofilm.

View Article and Find Full Text PDF

SAMHD1 shapes deoxynucleotide triphosphate homeostasis by interconnecting the depletion and biosynthesis of different dNTPs.

Nat Commun

January 2025

Department of Biochemistry and Structural Biology, UT Health San Antonio, San Antonio, TX, USA.

SAMHD1 is a dNTPase that impedes replication of HIV-1 in myeloid cells and resting T lymphocytes. Here we elucidate the substrate activation mechanism of SAMHD1, which involves dNTP binding at allosteric sites and transient tetramerization. Our findings reveal that tetramerization alone is insufficient to promote dNTP hydrolysis; instead, the activation mechanism requires an inactive tetrameric intermediate with partially occupied allosteric sites.

View Article and Find Full Text PDF

Polysaccharides, found universally in all living-species, exhibit diverse biochemical structures and play crucial roles in microorganisms, animals, and plants to defend against pathogens, environmental stress and climate-changing. Microbial exopolysaccharides are essential for cell adhesion and stress resilience and using them has notable advantages over synthetic polysaccharides. Exopolysaccharides have versatile structures and physicochemical properties, used in food systems, therapeutics, cosmetics, agriculture, and polymer industries.

View Article and Find Full Text PDF

Hydrolyzing collagen by extracellular protease Hap of Aeromonas salmonicida: Turning chicken by-products into bioactive resources.

Food Chem

January 2025

State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, PR China. Electronic address:

Collagen-rich meat processing by-products have potential utilization value. Extracellular protease Hap from meat-borne Aeromonas salmonicida has been identified as an ideal protease for hydrolyzing collagen. Here, to explore the possible application of Hap for giving chicken by-products a high added value, the hydrolysis ability and mechanism were investigated.

View Article and Find Full Text PDF

Enterococcus faecalis is a multi-drug-resistant human pathogen that is found in a variety of environments and is challenging to treat. Under stress conditions, some bacteria regulate intracellular polyamine concentrations via polyamine acetyltransferases to reduce their toxicity. The E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!