Coupling Dual-phased nickel selenides with N-doped carbon enables efficient urea electrocatalytic oxidation.

J Colloid Interface Sci

Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, PR China.

Published: January 2023

Electrochemical urea oxidation reaction (UOR) is urgently in demand for diverse energy conversion and storage device coupled with pollution treatment because of its favorable thermodynamic potential (0.37 V vs RHE) and wide distribution nature of urea, but simultaneously gravely limited by the sluggish reaction dynamics and poisoning of catalyst. Herein, dual-phased NiSe/NiSe coupling with N doped carbon (NiSe/NiSe@NC-2) in situ is prepared by a solvothermal-selenization pathway. Benefiting from the collective promotion of the dual-phased composition and the NC support, NiSe/NiSe@NC provides abundant active sites, enhanced electrical conductivity. It delivers a current density of 252 mA cm at 1.6 V vs RHE with a small Tafel slop of 64.4 mV dec and gets a lower reaction barrier. Moreover, it requires a cell voltage of 1.46 V to approach 50 mA cm, about 250 mV less than that of water electrolysis, confirming the less energy consumption. Notably, the N doped carbon protects NiSe/NiSe nanocrystals from aggregation leading to a faster CO desorption from Ni sites, which endow the NiSe/NiSe@NC-2 a much better working stability. The direct urea hydrogen peroxide fuel cell (DUHPFC) achieves a maximum power density of 9.09 mW cm at 20 °C. This work extends highly efficient dual-phased structure loading in NC catalysts system for urea-assisted energy conversion.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.08.095DOI Listing

Publication Analysis

Top Keywords

energy conversion
8
doped carbon
8
coupling dual-phased
4
dual-phased nickel
4
nickel selenides
4
selenides n-doped
4
n-doped carbon
4
carbon enables
4
enables efficient
4
urea
4

Similar Publications

Prussian blue analogs (PBAs), as a classical kind of microporous materials, have attracted substantial interests considering their well-defined framework structures, unique physicochemical properties and low cost. However, PBAs typically adopt cubic structure that features small pore size and low specific surface area, which greatly limits their practical applications in various fields ranging from gas adsorption/separation to energy conversion/storage and biomedical treatments. Here we report the facile and general synthesis of unconventional hexagonal open PBA structures.

View Article and Find Full Text PDF

Arginine as a multifunctional additive for high performance S-cathode.

ChemSusChem

January 2025

Washington State University, School of Mechanical and Materials Engineering, PO Box 642920, 99164-2920, Pullman, UNITED STATES OF AMERICA.

Advancement of sulfur (S) cathode of lithium-sulfur (Li-S) batteries is hindered by issues such as insulating nature of sulfur, sluggish redox kinetics, polysulfide dissolution and shuttling. To address these issues, we initiate a study on applying an important amino acid of protein, arginine (Arg), as a functional additive into S cathodes. Based on our simulation study, the positively charged Arg facilitates strong interactions with polysulfides.

View Article and Find Full Text PDF

Experimental and kinetic modeling study of oxidative degradation of benzene and phenol in supercritical water.

J Environ Manage

January 2025

Shaanxi Key Laboratory of New Transportation Energy and Automotive Energy Saving, School of Energy and Electrical Engineering, Chang'an University, Xi'an, Shaanxi, 710064, PR China.

Benzene and phenol are representative aromatic compounds existing commonly in wastewater. The kinetics of oxidative degradation of benzene and phenol in supercritical water have been investigated in a flow reactor at 823 K and 250 atm, with the excess oxygen ratio ranging from 0.5 to 2.

View Article and Find Full Text PDF

Oxygen vacancy-rich defective tungsten oxide (WO) modified by Prussian blue for efficient photocatalytic carbon dioxide conversion and tetracycline degradation.

J Colloid Interface Sci

December 2024

Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38834, Greece. Electronic address:

The coupling of carbon dioxide (CO) with epoxides to produce cyclic carbonates is a desirable decarbonization approach, but its commercial applicability is still restricted by the costly catalysts required, as well as the need for high temperature and high pressure. Herein, oxygen vacancy-rich defective tungsten oxide (WO) rich in Lewis acid sites was modified by Prussian blue (PB), and the obtained composite reaches up to 94 % styrene carbonate yield (171 mmol gh) at ambient temperature and pressure, exhibiting outstanding advantages in the photocatalytic CO cycloaddition reaction compared with currently reported photocatalysts. It is found that the introduction of PB with photothermal properties significantly enhances the capability of WO to absorb and activate CO and epoxide, along with its light utilization ability.

View Article and Find Full Text PDF

ENO1 promotes PDAC progression by inhibiting CD8 T cell infiltration through upregulating PD-L1 expression via HIF-1α signaling.

Transl Oncol

January 2025

State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China. Electronic address:

Metabolic reprogramming is a hallmark of cancer. The"Warburg effect", also known as aerobic glycolysis, is an essential part of metabolic reprogramming and a central contributor to cancer progression. Moreover, hypoxia is one of the significant features of pancreatic ductal adenocarcinoma (PDAC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!