Hypothesis: Titanium and its alloys are commonly used implant materials. Once inserted into the body, the interface of the biomaterials is the most likely site for the development of implant-associated infections. Imparting the titanium substrate with high-aspect-ratio nanostructures, which can be uniformly achieved using hydrothermal etching, enables a mechanical contact-killing (mechanoresponsive) mechanism of bacterial and fungal cells. Interaction between cells and the surface shows cellular inactivation via a physical mechanism meaning that careful engineering of the interface is needed to optimse the technology. This mechanism of action is only effective towards surface adsorbed microbes, thus any cells not directly in contact with the substrate will survive and limit the antimicrobial efficacy of the titanium nanostructures. Therefore, we propose that a dual-action mechanoresponsive and chemical-surface approach must be utilised to improve antimicrobial activity. The addition of antimicrobial silver nanoparticles will provide a secondary, chemical mechanism to escalate the microbial response in tandem with the physical puncture of the cells.

Experiments: Hydrothermal etching is used as a facile method to impart variant nanostrucutres on the titanium substrate to increase the antimicrobial response. Increasing concentrations (0.25 M, 0.50 M, 1.0 M, 2.0 M) of sodium hydroxide etching solution were used to provide differing degrees of nanostructured morphology on the surface after 3 h of heating at 150 °C. This produced titanium nanospikes, nanoblades, and nanowires, respectively, as a function of etchant concentration. These substrates then provided an interface for the deposition of silver nanoparticles via a reduction pathway. Methicillin-resistant Staphylococcous aureus (MRSA) and Candida auris (C. auris) were used as model bacteria and fungi, respectively, to test the effectiveness of the nanostructured titanium with and without silver nanoparticles, and the bio-interactions at the interface.

Findings: The presence of nanostructure increased the bactericidal response of titanium against MRSA from ∼ 10 % on commercially pure titanium to a maximum of ∼ 60 % and increased the fungicidal response from ∼ 10 % to ∼ 70 % in C. auris. Introducing silver nanoparticles increased the microbiocidal response to ∼ 99 % towards both bacteria and fungi. Importantly, this study highlights that nanostructure alone is not sufficient to develop a highly antimicrobial titanium substrate. A dual-action, physical and chemical antimicrobial approach is better suited to produce highly effective antibacterial and antifungal surface technologies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2022.08.052DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
16
titanium substrate
12
titanium
10
nanostructured titanium
8
bacterial fungal
8
hydrothermal etching
8
bacteria fungi
8
antimicrobial
6
response
5
dual-action silver
4

Similar Publications

The development of resistance to traditional antifungal therapies has necessitated the exploration of alternative treatment strategies to effectively manage fungal infections, particularly those induced by (). This research investigates the possibility of integrating silver nanoparticles (AgNPs) with Terbinafine to improve antifungal effectiveness. Terbinafine, while potent, faces challenges with specific fungal strains, highlighting the need for strategies to enhance its treatment efficacy.

View Article and Find Full Text PDF

Liver cancer is a prevalent form of carcinoma worldwide. A novel chitosan-coated optimized formulation capped with irradiated silver nanoparticles (INops) was fabricated to boost the anti-malignant impact of rosuvastatin calcium (RC). Using a 2-factorial design, eight formulations were produced using the solvent evaporation process.

View Article and Find Full Text PDF

Nanoparticle-Doped Antibacterial and Antifungal Coatings.

Polymers (Basel)

January 2025

Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.

Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.

View Article and Find Full Text PDF

Multifunctional Biological Performance of Electrospun PCL Scaffolds Formulated with Silver Sulfide Nanoparticles.

Polymers (Basel)

January 2025

Centro de Investigación y Desarrollo Tecnológico en Electroquímica SC, Parque Tecnológico Querétaro s/n Sanfandila, Pedro Escobedo, Querétaro 76703, Mexico.

Our work describes the green synthesis of silver sulfide nanoparticles (AgS NPs) and their formulation into polycaprolactone fibers (PCL), aiming to improve the multifunctional biological performance of PCL membranes as scaffolds. For this purpose, an extract of rosemary () was employed as a reducing agent for the AgS NPs, obtaining irregular NPs and clusters of 5-60 nm, with a characteristic SPR absorption at 369 nm. AgS was successfully incorporated into PCL fibers by electrospinning using heparin (HEP) as a stabilizer/biocompatibility agent, obtaining nanostructured fibers with a ca.

View Article and Find Full Text PDF

This review evaluates the cytotoxic potential of the genus, with a focus on , , and . These species, known for their diverse phytochemical compositions, exhibit notable cytotoxic effects that suggest their utility in natural cancer treatments. Compounds such as quercetin, kaempferol, and sesbagrandiforian A and B have been highlighted for their strong antioxidant and antiproliferative effects, further emphasizing their therapeutic potential.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!