The realization of high-efficient digestion in a microfluidic reactor is considered to be advantageous for pretreatment toward online pollutant detection. However, it is difficult to achieve satisfactory device performance due to the gap between the low digestion reaction efficiency and the demand for rapid pretreatment for online detection. Herein, we design and manufacture an optofluidic microreactor combined with a MnO nanofilm localizing the heat inside the reaction chamber under solar irradiation, which contributes a lot to the on-chip nutrient digestion efficiency enhancement. The overall temperature of the water sample in the reactor chamber can be dramatically increased in a fleeting time of less than 1 s and maintained at 78 °C. The digestion rate constant of the microreactor is improved by about 100 times compared with that obtained by the traditional method in the national standard, which is attributed to temperature enhancement and various oxidation reactions in the heated reaction chamber. Notably, when pretreating the actual total phosphorus water samples, the digestion efficiency is demonstrated to be higher than 95% within 12 s under solar light irradiation. The optofluidic platform brings many benefits to accelerate the various photochemically enhanced reactions using solar light and is extremely adapted for rapid pretreatment of biochemical samples to further develop their online analysis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c10261 | DOI Listing |
Environ Res
December 2024
Engler-Bunte-Institut, Water Chemistry and Water Technology, Karlsruhe Institute of Technology, Engler-Bunte-Ring 9, 76131 Karlsruhe, Germany.
This study reviewed the recovery of humic substances (HS) from anaerobic digestate of sludge as a potential fertilizer, focusing on the quantification of HS, the efficiency of HS recovery, and its interaction with pollutants. The potential pitfalls of current misunderstanding for HS quantification in sludge were pointed out. HS present in sludge showed potential to be used as a fertilizer, which solubilized insoluble phosphates for enhanced soil fertility.
View Article and Find Full Text PDFJ Clin Monit Comput
December 2024
Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Mitochondrial oxygen tension (MitoPO2) is a promising novel non-invasive bedside marker of circulatory shock and is associated with organ failure. The measurement of mitoPO2 requires the topical application of 5-aminolevulinc acid (ALA) to induce sufficient concentrations of the fluorescent protein protoporphyrin-IX within (epi)dermal cells. Currently, its clinical potential in guiding resuscitation therapies is limited by the long induction time prior to obtaining a reliable measurement signal.
View Article and Find Full Text PDFSe Pu
January 2025
School of Public Health, Nanjing Medical University, Nanjing 211166, China.
Chlorinated coumarins, which are as cytotoxic as highly toxic halobenzoquinones toward CHO-K1 cells, have recently been identified as disinfection byproducts in drinking water disinfection processes. Therefore, detecting coumarins in water samples collected at various stages from drinking water treatment plants helps assess the formation of chlorinated coumarins in drinking water. Hence, a simple, rapid, accurate, and sensitive method for quantifying coumarins in water samples is required.
View Article and Find Full Text PDFSe Pu
January 2025
Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, China.
Halogenated organic pollutants (HOPs) have attracted considerable attention owing to their persistence, bioaccumulation, and toxicity. The development of methods to detect HOPs in fish is challenging owing to the compositional complexity of fish matrices, which contain high levels of lipids and relatively low concentrations of HOPs. In addition, the lipophilicity of most HOPs renders their extraction difficult.
View Article and Find Full Text PDFAnimal
November 2024
Département des sciences animales, Université Laval, Pavillon Paul-Comtois, 2425 rue de l'Agriculture, Québec, QC, G1V 0A6, Canada. Electronic address:
In late gestation, the increased energy demand to support the rapid fetal growth can induce an acute negative energy balance associated with a high risk of pregnancy toxemia, especially for prolific ewes (carrying two or more fetuses). The current study was conducted to evaluate the effects of dietary energy during the last 6 weeks prepartum on the energy metabolism dynamic responses and the newborn lamb metabolic profile in prolific ewes. Forty-five crossbred (Dorset × Romanov) ewes were randomly assigned to 1 of 3 dietary energy densities: E: 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!