Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
There is a knowledge gap in the effects of climate warming and nitrogen (N) deposition on root N absorption capacity, which limits our ability to predict how climate change alters the N cycling and its consequences for forest productivity especially in subtropical areas where soil N availability is already high. In order to explore the effects and mechanism of warming and the N deposition on root N absorption capacity of Chinese fir (Cunninghamia lanceolata), a subtropical arbuscular mycorrhizal conifer, the fine root 15NH4+ and 15NO3- uptake kinetics at a reference temperature of 20 °C were measured across different seasons in a factorial soil warming (ambient, +5 °C) × N addition (ambient, +40 kg N ha-1 yr-1) experiment. The results showed that (i) compared with the control, warming increased the maximal uptake rate of NH4+ (Vmax,20 °C-NH4+) in summer, while N addition enhanced it in spring and summer; compared with non-warming treatments, warming treatments increased the uptake rate of NO3- at a reference concentration of 100 μmol (V100,20 °C-NO3-) in spring. (ii) The analysis of covariance showed that Vmax,20 °C-NH4+ was positively correlated with root mycorrhizal colonization rate (MCR) and V100,20 °C-NO3- was positively correlated with specific root respiration rate (SRR), whereas no N uptake kinetic parameter was correlated with specific root length, root N and non-structural carbon concentrations. Thus, our results demonstrate that warming-increased root NH4+ uptake might be related to warming-increased MCR, whereas warming-increased root NO3- uptake might be related to warming-increased SRR. We conclude that root NH4+ and NO3- uptake capacity of subtropical Chinese fir can be elevated under warming and N deposition, which could improve plantation productivity and mitigate N leaching loss and soil acidification.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/treephys/tpac103 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!