Thermal management of flexible/stretchable electronics has been a crucial issue. Mass supernumerary thermal heat is created in the repetitive course of deformation because of the large nanocontact resistance between electric conductive fillers, as well as the interfacial resistance between fillers and the polymer matrix. Here, we report a stretchable thermoplastic polyurethane (TPU)-boron nitride nanosheet (BNNS) composite film with a high in-plane thermal conductivity based on an air/water interfacial (AWI) assembly method. In addition to rigid devices, it was capable for thermal management of flexible electronics. During more than 2000 cycles of the bending-releasing process, the average saturated surface temperature of the flexible conductor covered with composite film with 30 wt % BNNSs was approximately 40.8 ± 1 °C (10.5 °C lower than that with pure TPU). Moreover, the thermal dissipating property of the composite under stretching was measured. All the results prove that this TPU-BNNS composite film is a candidate for thermal management of next-generation flexible/stretchable electronics with high power density.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.2c12386 | DOI Listing |
Sci Adv
January 2025
National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China.
Flexible thermoelectric systems capable of converting human body heat or solar heat into sustainable electricity are crucial for the development of self-powered wearable electronics. However, challenges persist in maintaining a stable temperature gradient and enabling scalable fabrication for their commercialization. Herein, we present a facile approach involving the screen printing of large-scale carbon nanotube (CNT)-based thermoelectric arrays on conventional textile.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia.
Effective heat management is critical for improving energy efficiency and minimizing environmental impact. Passive radiative heat management systems rely on specific materials and design configurations to naturally modulate temperature, enhance system reliability, and decrease operational costs by modulating infrared light. However, their static nature proves insufficient in dynamic settings experiencing significant temperature fluctuations.
View Article and Find Full Text PDFSmall
January 2025
School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, P. R. China.
Multifunctional coatings have great application value in the protection of Marine equipment, ships and ship facilities, but they still suffer from the disadvantages of high preparation cost and complicated synthesis methods. Herein, employing a simple method to synthesize black carbon nitride (BCN), as the filler in polydimethylsiloxane (PDMS) to construct BCN/PDMS composite coating with a multifunctional anti-corrosion/antifouling coating capable of photothermal self-healing property. Experimental results exhibit that the BCN/PDMS coating can still possesses excellent corrosion resistance after 28 d of immersion in the simulated seawater, and the impedance modulus still manages to reach 6.
View Article and Find Full Text PDFSci Rep
January 2025
School of Highway, Chang'an University, Xi'an, 710064, Shaanxi, China.
The long-term safety and durability of anchor systems are the focus of slope maintenance management and sustainable operation. This study presents the observed temperature, humidity, and anchor bolt stress at varying depths from four-year remote real-time monitoring of the selected loess highway cut-slope. The potential correlation between slope hydrothermal environment and anchor stress is analyzed.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Water Resources, Climatology and Environmental Management, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland.
Climate change and air pollution are pressing public health concerns, necessitating monitoring of their impact, particularly on respiratory diseases like obstructive lung diseases. This retrospective study analyzed medical records of patients hospitalized at the Warmia and Mazury Centre for Pulmonary Diseases in Olsztyn, Poland (2012-2021) for asthma and chronic obstructive pulmonary disease (COPD) exacerbations. Data included meteorological factors such as temperature, humidity, wind speed, precipitation, and levels of PM2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!