Networks are an important means for the representation and analysis of data in a variety of research and application areas. While there are many efficient methods to create layouts for networks to support their visual analysis, approaches for the comparison of networks are still underexplored. Especially when it comes to the comparison of weighted networks, which is an important task in several areas, such as biology and biomedicine, there is a lack of efficient visualization approaches. With the availability of affordable high-quality virtual reality (VR) devices, such as head-mounted displays (HMDs), the research field of immersive analytics emerged and showed great potential for using the new technology for visual data exploration. However, the use of immersive technology for the comparison of networks is still underexplored. With this work, we explore how weighted networks can be visually compared in an immersive VR environment and investigate how visual representations can benefit from the extended 3D design space. For this purpose, we develop different encodings for 3D node-link diagrams supporting the visualization of two networks within a single representation and evaluate them in a pilot user study. We incorporate the results into a more extensive user study comparing node-link representations with matrix representations encoding two networks simultaneously. The data and tasks designed for our experiments are similar to those occurring in real-world scenarios. Our evaluation shows significantly better results for the node-link representations, which is contrary to comparable 2D experiments and indicates a high potential for using VR for the visual comparison of networks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/TVCG.2022.3203001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!