A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Gesture Spotter: A Rapid Prototyping Tool for Key Gesture Spotting in Virtual and Augmented Reality Applications. | LitMetric

In this paper we examine the task of key gesture spotting: accurate and timely online recognition of hand gestures. We specifically seek to address two key challenges faced by developers when integrating key gesture spotting functionality into their applications. These are: i) achieving high accuracy and zero or negative activation lag with single-time activation; and ii) avoiding the requirement for deep domain expertise in machine learning. We address the first challenge by proposing a key gesture spotting architecture consisting of a novel gesture classifier model and a novel single-time activation algorithm. This key gesture spotting architecture was evaluated on four separate hand skeleton gesture datasets, and achieved high recognition accuracy with early detection. We address the second challenge by encapsulating different data processing and augmentation strategies, as well as the proposed key gesture spotting architecture, into a graphical user interface and an application programming interface. Two user studies demonstrate that developers are able to efficiently construct custom recognizers using both the graphical user interface and the application programming interface.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TVCG.2022.3203004DOI Listing

Publication Analysis

Top Keywords

key gesture
24
gesture spotting
24
spotting architecture
12
gesture
9
single-time activation
8
graphical user
8
user interface
8
interface application
8
application programming
8
programming interface
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!