The Hawaiian Archipelago experienced a moderate bleaching event in 2019-the third major bleaching event over a 6-year period to impact the islands. In response, the Hawai'i Coral Bleaching Collaborative (HCBC) conducted 2,177 coral bleaching surveys across the Hawaiian Archipelago. The HCBC was established to coordinate bleaching monitoring efforts across the state between academic institutions, non-governmental organizations, and governmental agencies to facilitate data sharing and provide management recommendations. In 2019, the goals of this unique partnership were to: 1) assess the spatial and temporal patterns of thermal stress; 2) examine taxa-level patterns in bleaching susceptibility; 3) quantify spatial variation in bleaching extent; 4) compare 2019 patterns to those of prior bleaching events; 5) identify predictors of bleaching in 2019; and 6) explore site-specific management strategies to mitigate future bleaching events. Both acute thermal stress and bleaching in 2019 were less severe overall compared to the last major marine heatwave events in 2014 and 2015. Bleaching observed was highly site- and taxon-specific, driven by the susceptibility of remaining coral assemblages whose structure was likely shaped by previous bleaching and subsequent mortality. A suite of environmental and anthropogenic predictors was significantly correlated with observed bleaching in 2019. Acute environmental stressors, such as temperature and surface light, were equally important as previous conditions (e.g. historical thermal stress and historical bleaching) in accounting for variation in bleaching during the 2019 event. We found little evidence for acclimation by reefs to thermal stress in the main Hawaiian Islands. Moreover, our findings illustrate how detrimental effects of local anthropogenic stressors, such as tourism and urban run-off, may be exacerbated under high thermal stress. In light of the forecasted increase in severity and frequency of bleaching events, future mitigation of both local and global stressors is a high priority for the future of corals in Hawai'i.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9436070PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0269068PLOS

Publication Analysis

Top Keywords

thermal stress
20
bleaching
18
bleaching 2019
16
hawaiian archipelago
12
bleaching events
12
bleaching event
8
coral bleaching
8
variation bleaching
8
0
7
thermal
5

Similar Publications

Ethnopharmacological Relevance: Nonalcoholic steatohepatitis (NASH) poses significant health risks; however, effective treatment options remain scarce. Yinchen-Gancao decoction (YG, a formula composed of Traditional Chinese Medicine Artemisia capillaris Thunb. and Glycyrrhiza uralensis Fisch.

View Article and Find Full Text PDF

Objective: Photopolymerized resin composites are widely used as dental filling materials. However, the shrinkage stress generated during photopolymerization can lead to marginal microcracks and eventual restoration failure. Accurate assessment of the stress evolution in dental restorations, particularly in complex cavity geometries, is critical for improving the performance and longevity of the dental filling materials.

View Article and Find Full Text PDF

Boron nitride (BN), renowned for its exceptional optoelectrical properties, mechanical robustness, and thermal stability, has emerged as a promising two-dimensional (2D) material. Reinforcing AZ80 magnesium alloy with BN can significantly enhance its mechanical properties. To investigate and predict this enhancement during hot deformation, we introduce two independent modeling approaches a modified Johnson-Cook (J-C) constitutive model and an Artificial Neural Network (ANN).

View Article and Find Full Text PDF

Intermittent Thermal Convection in Jammed Emulsions.

Phys Rev Lett

December 2024

Department of Physics and INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy.

We study the process of thermal convection in jammed emulsions with a yield-stress rheology. We find that heat transfer occurs via an intermittent mechanism, whereby intense short-lived convective "heat bursts" are spaced out by long-lasting conductive periods. This behavior is the result of a sequence of fluidization-rigidity transitions, rooted in a nontrivial interplay between emulsion yield-stress rheology and plastic activity, which we characterize via a statistical analysis of the dynamics at the droplet scale.

View Article and Find Full Text PDF

Mechanisms of thermal, acid, desiccation and osmotic tolerance of spp.

Crit Rev Food Sci Nutr

January 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, China.

spp. exhibit remarkable resilience to extreme environmental stresses, including thermal, acidic, desiccation, and osmotic conditions, posing significant challenges to food safety. Their thermotolerance relies on heat shock proteins (HSPs), thermotolerance genomic islands, enhanced DNA repair mechanisms, and metabolic adjustments, ensuring survival under high-temperature conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!