Fetal membrane activation is seen as being one of the crucial triggering components of human parturition. Increased prostaglandin E2 (PGE2) production, a common mediator of labor onset in virtually all species, is recognized as one of the landmark events of membrane activation. Fetal membranes are also equipped with a high capacity of cortisol regeneration by 11β-hydroxysteroid dehydrogenase 1 (11β-HSD1), and the cortisol regenerated potently induces PGE2 synthesis, an effect normally suppressed by progesterone during gestation. There is no precipitous decline of progesterone synthesis in human parturition. It is intriguing how this suppression is lifted in parturition. Here, we investigated this issue by using human amnion tissue and primary amnion fibroblasts which synthesize the most PGE2 in the fetal membranes. Results showed that the expression of 11β-HSD1 and aldo-keto reductase family 1 member C1 (AKR1C1), a progesterone-inactivating enzyme, increased in parallel in human amnion tissue with gestational age toward the end of gestation and at parturition. Cortisol induced AKR1C1 expression via the transcription factor CCAAT enhancer binding protein δ (C/EBPδ) in amnion fibroblasts. Inhibition of AKR1C1 not only blocked progesterone catabolism induced by cortisol, but also enhanced the suppression of cortisol-induced cyclooxygenase-2 (COX-2) expression by progesterone in amnion fibroblasts. In conclusion, our results indicate that cortisol regenerated in the fetal membranes triggers local progesterone withdrawal through enhancement of AKR1C1-mediated progesterone catabolism in amnion fibroblasts, so that the suppression of progesterone on the induction of COX-2 expression and PGE2 synthesis by cortisol can be lifted for parturition.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endocr/bqac148DOI Listing

Publication Analysis

Top Keywords

amnion fibroblasts
20
human amnion
12
fetal membranes
12
progesterone
8
local progesterone
8
progesterone withdrawal
8
membrane activation
8
human parturition
8
cortisol regenerated
8
pge2 synthesis
8

Similar Publications

Article Synopsis
  • * Diabetic rats received HAM scaffolds with and without curcumin for 21 days, with evaluations showing significant improvements in wound healing parameters like closure rates, cellular regeneration, and collagen deposition in both treated groups.
  • * The results indicated that the combined treatment (HAMS/β/C group) outperformed the HAM-only treatment in nearly all healing metrics, while also reducing inflammation, showcasing a potentially effective method for diabetic wound management.
View Article and Find Full Text PDF

Insufficient levels of nitric oxide may lead to chronic and acute wounds. Additionally, it is crucial that nitric oxide is prepared in a controlled-release manner due to its gaseous nature and short half-life. To address this issue, utilizing nitric oxide donors, particularly S-nitrosothiols such as S-nitrosoglutathione (GSNO), could efficiently overcome instability and aid in biomedical applications.

View Article and Find Full Text PDF

Transfersomal serum loading amniotic mesenchymal stem cells metabolite products with hyaluronic acid addition for skin regeneration in UV aging-induced mice.

Int J Pharm

December 2024

Department of Pharmaceutical Sciences, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia; Skin and Cosmetic Technology Center of Excellence, Faculty of Pharmacy, Universitas Airlangga, Campus C UNAIR Mulyorejo, Surabaya 60115, Indonesia.

Amniotic Mesenchymal Stem Cells Metabolite Products (AMSC-MP) contain growth factors that benefit human health. This study aims to evaluate the use of transfersomal serum (Trans) with hyaluronic acid (HA) addition to deliver large molecules of AMSC-MP for skin regeneration. Trans is composed of L-α-phosphatidylcholine and surfactants, i.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!