Mechanistic Principles for Engineering Hierarchical Porous Metal-Organic Frameworks.

ACS Nano

Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver V6T 1Z1, Canada.

Published: September 2022

Metal-organic frameworks (MOFs) have generated tremendous research interest in the past two decades, due to their high surface areas, tailorable active sites, and tunable structures. Hierarchical porous MOFs (HP-MOFs) with two or more pore systems are particularly attractive, benefiting from improved active site accessibility and enhanced mass diffusivity in applications involving bulk molecules. This review outlines the mechanistic principles used for the rational design of HP-MOFs, current techniques used to measure their hierarchical porosities, as well as their emerging applications. We then critically summarize the current challenges in this field and provide a contemporary perspective on the technological innovations that would address current synthetic challenges in the field of HP-MOFs. The aim of this review is to provide an in-depth understanding of the formation mechanisms, materials chemistry, and structural and chemical properties of HP-MOFs while exploring ways to enhance the performance of current MOF materials in a range of fields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.2c06587DOI Listing

Publication Analysis

Top Keywords

mechanistic principles
8
hierarchical porous
8
metal-organic frameworks
8
challenges field
8
principles engineering
4
engineering hierarchical
4
porous metal-organic
4
frameworks metal-organic
4
frameworks mofs
4
mofs generated
4

Similar Publications

This comprehensive review explores the transformative potential of PROTAC (Proteolysis-Targeting Chimeras) therapy as a groundbreaking approach in the landscape of lung cancer treatment. The introduction provides a succinct overview of current challenges in lung cancer treatment, emphasizing the significance of targeted therapies. Focusing on PROTAC therapy, the article elucidates its mechanism of action, comparing it with traditional targeted therapies and highlighting the key components and design principles of PROTAC molecules.

View Article and Find Full Text PDF

Background: Inherited metabolic diseases (IMDs) may have considerable implications for patients and their families. Despite their individual rarity, covering a spectrum of over 1800 distinct diseases, the diseases collectively exert a significant impact, with often lifelong disabilities. The United for Metabolic Diseases consortium was established to catalyze research with translation into the best possible care.

View Article and Find Full Text PDF

Background: Osteosarcoma (OS), the most prevalent primary malignant bone tumor in children and adolescents, arises from bone-forming mesenchymal cells. Despite advancements in surgical resection and neoadjuvant chemotherapy (cisplatin, doxorubicin, and methotrexate), chemotherapy resistance remains a significant challenge, leading to poor survival rates in patients with metastatic or recurrent OS.

Methods: In this study, we focused on the role of OTULIN, a key linear deubiquitinating enzyme, in OS chemoresistance.

View Article and Find Full Text PDF

Mechanistic insights into SIRT7 and EZH2 regulation of cisplatin resistance in bladder cancer cells.

Cell Death Dis

December 2024

Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Urology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.

Cisplatin (CDDP) resistance has been established to significantly impact Bladder Cancer (BCa) therapy. On the other hand, the crucial regulatory involvement of SIRT7 and EZH2 in bladder cancer development is well known. Herein, the collaborative regulatory roles and underlying mechanisms of SIRT7 and EZH2 in CDDP resistance in bladder cancer were explored.

View Article and Find Full Text PDF

Background: Gestational diabetes mellitus (GDM) has been associated with several fetal complications, such as macrosomia and fetal growth restriction (FGR). Infants from GDM associated FGR are at increased risk for adult-onset obesity and associated metabolic disorders. However, the underlying mechanisms of GDM associated FGR remain to be explored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!