Background: The demonstration of batch-to-batch consistency is indispensable for quality control of vaccines.
Methods: We conducted a randomized, double-blind, parallel-controlled trial to evaluate the immunogenicity consistency of a single shot of Ad5-nCoV in healthy adults who had not previously received any COVID-19 vaccine. All eligible participants were randomly assigned equally to receive one of the three consecutive batches of Ad5-nCoV (5 × 10 viral particles/vial, 0.5 mL). The primary endpoint was geometric mean titers (GMTs) of serum SARS-CoV-2 receptor-binding domain (RBD)-specific IgG on day 28 post-vaccination.
Results: One thousand fifty participants were enrolled, with 350 (33%) participants per group. On day 28 post-vaccination, GMTs in three groups were 78.3 binding antibody units (BAU)/mL (95% CI 70.3-87.3), 82.9 BAU/mL (73.9-92.9), and 78.8 BAU/mL (70.2-88.4), respectively. The two-sided 95% CIs for the GMT ratios between each pair of batches were all between 0.67 and 1.5. The highest incidence of solicited adverse reactions within 7 days post-vaccination was reported by batch 3 recipients (23.1% versus 15.1% in batch 1 recipients and 14.6% in bath 2 recipients; p = 0.0039). None of the serious adverse events were related to vaccination.
Conclusions: Immunogenicity consistency between consecutive batches of Ad5-nCoV was well established in adults.
Clinical Trial Registration: This trial was registered with ClinicalTrials.gov (NCT05313646).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/14760584.2022.2119133 | DOI Listing |
Wound Repair Regen
January 2025
Wits Advanced Drug Delivery Platform (WADDP) Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.
As the number of patients requiring organ transplants continues to rise exponentially, there is a dire need for therapeutics, with repair and regenerative properties, to assist in alleviating this medical crisis. Over the past decade, there has been a shift from conventional stem cell treatments towards the use of the secretome, the protein and factor secretions from cells. These components may possess novel druggable targets and hold the key to profoundly altering the field of regenerative medicine.
View Article and Find Full Text PDFPharmaceutics
November 2024
Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de La Laguna, Avda. Fco. Sánchez, s/n, 38200 Santa Cruz de Tenerife, Spain.
Background: The manufacture of biologics is a complex, controlled, and reproducible process that results in a product that meets specifications. This should be based on data from batches used to demonstrate manufacturing consistency. Ten batches of originator product (Avastin) were analyzed over a 10-year period.
View Article and Find Full Text PDFN Biotechnol
November 2024
Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria. Electronic address:
β1,4-galactosylation is a typical human N-glycan formation with functional impact on proteins, particularly known for IgGs. Therefore, the expression of recombinant proteins with controlled galactosylation is an important quality parameter in the biotech industry. Here we describe the establishment of a plant-based expression platform for the manufacturing of recombinant proteins carrying β1,4-galactosylated N-glycans.
View Article and Find Full Text PDFDrug Discov Today
November 2024
Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Lucknow 226002, India. Electronic address:
Pharmaceutical product development involves multiple steps; therefore product quality must be assessed to ensure robustness and acceptability. Raw components, production methods, and ambient conditions yield highly variable end products with low batch-to-batch consistency. Although end testing is performed to ensure product quality, intermediate quality checks are limited.
View Article and Find Full Text PDFBiochem Biophys Rep
December 2024
Applied Microbiology Research Center, Biomedicine Technologies Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
Aptamers are nucleic acid (Ribonucleic acid (RNA) and single strand deoxyribonucleic acid (ssDNA)) with a length of approximately 25-80 bases that can bind to particular target molecules, similar to monoclonal antibodies. Due to their many benefits, which include a long shelf life, minimal batch-to-batch variations, extremely low immunogenicity, the possibility of chemical modifications for improved stability, an extended serum half-life, and targeted delivery, they are receiving a lot of attention in a variety of clinical applications. The development of high-affinity modification approaches has attracted significant attention in aptamer applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!