Dysregulation of G6PD involved in the pentose phosphate pathway (PPP) is known to promote tumorigenesis. The PPP plays a pivotal role in meeting the anabolic demands of cancer cells. However, the detailed underlying molecular mechanisms of targeting the G6PD-regulated PPP in breast cancer remain unclear. In this study, we aimed to elucidate the molecular pathways mediating the effects of G6PD on cancer progression. Clinical sample analysis found that the expression of G6PD in breast cancer patients was higher than that in normal controls, and patients with higher G6PD expression had poor survival. Gene knockdown or inhibition of G6PD by 6-AN in MCF-7 and MDA-MB-231 cells significantly decreased cell viability, migration, and colony formation ability. G6PD enzyme activity was inhibited by 6-AN treatment, which caused a transient upregulation of ROS. The elevated ROS was independent of cell apoptosis and thus associated with abnormal activated autophagy. Accumulated ROS levels induced autophagic cell death in breast cancer. Inhibition of G6PD suppresses tumour growth in preclinical models of breast cancer. Our results indicate that targeting the G6PD-regulated PPP could restrain tumours in vitro and in vivo, inhibiting G6PD caused cell death by over-activating autophagy, therefore leading to inhibited proliferation and tumour formation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10087799 | PMC |
http://dx.doi.org/10.1111/febs.16614 | DOI Listing |
Asia Pac J Clin Oncol
January 2025
Department of Thyroid and Breast Surgery, The Second Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
Aim: Breast cancer (BC) is the most frequently diagnosed malignancy worldwide, necessitating continued research into its molecular mechanisms. Circular RNAs (circRNAs) are increasingly recognized for their role in various cancers, including BC. This study explores the role of circRNA kinesin family member 4A (circKIF4A) in BC progression and its underlying molecular mechanisms.
View Article and Find Full Text PDFCA Cancer J Clin
January 2025
Division of Medical Oncology, Department of Internal Medicine, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA.
Poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors, such as olaparib, talazoparib, rucaparib, and niraparib, comprise a therapeutic class that targets PARP proteins involved in DNA repair. Cancer cells with homologous recombination repair defects, particularly BRCA alterations, display enhanced sensitivity to these agents because of synthetic lethality induced by PARP inhibitors. These agents have significantly improved survival outcomes across various malignancies, initially gaining regulatory approval in ovarian cancer and subsequently in breast, pancreatic, and prostate cancers in different indications.
View Article and Find Full Text PDFEndocr Metab Immune Disord Drug Targets
January 2025
Department of Vascular and Thyroid Surgery, Affiliated Hospital of Guangdong Medical University, Guangdong, China.
Background: Papillary Thyroid Carcinoma (PTC) is the most common thyroid cancer, with an etiology and progression that are not fully understood. Research suggests a link between cathepsins and PTC, but the causal nature of this link is unclear. This study uses Mendelian Randomization (MR) to investigate if cathepsins causally influence PTC risk.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Institute of Biomedical and Clinical Sciences, Medical School, Faculty of Health and Life Sciences, University of Exeter, Hatherly Laboratories, Streatham Campus, Exeter, EX4 4PS, UK.
Curr Drug Targets
January 2025
Pharmaceutics Research Projects Laboratory, Department of Pharmaceutical Sciences, Dr. Harisingh Gour Vishwavidyalaya, Sagar (M.P.) 470003, India.
Breast cancer remains the second most prevalent cancer among women in the United States. Despite advancements in surgical, radiological, and chemotherapeutic techniques, multidrug resistance continues to pose significant challenges in effective treatment. Combination chemotherapy has emerged as a promising approach to address these limitations, allowing multiple drugs to target malignancies via distinct mechanisms of action.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!