The adhesive bonding technique together with tooth-colored ceramic material in fabricating veneers is considered one of the greatest achievements in modern prosthodontics. There is a wide range of indications for veneers, but they are most commonly used to establish adequate function and mask tooth discolorations and inappropriate tooth shape, size or position. A large variety of all-ceramic materials with excellent properties is available on the market today. It is challenging to select the material that will provide the best esthetics and function. The present article explains the principles of a modern, individual treatment approach for a young adult patient with multiple diastemata and shade disharmonies in the maxillary anterior teeth. The treatment plan was based on the selection of the appropriate ceramic material and technical procedures to achieve the best esthetic results using veneers. This included analyzing the specific case; defining the treatment goal; determining the precise shade; and selecting the most suitable and appropriate ceramic material, preparation design, fabrication technique, and adhesive concept. It was decided to use the new VITA zirconia-reinforced lithium disilicate press ceramic system and leucite-reinforced glass-ceramic veneering system to fabricate indirect ceramic veneers for all the maxillary anterior teeth. The size, shape, position, and shade of the natural teeth were changed and the diastemata were closed to achieve a more proportional dental relationship. The esthetic and functional goals were achieved and the patient was extremely satisfied with the final outcome.
Download full-text PDF |
Source |
---|
ACS Appl Mater Interfaces
January 2025
School of Materials Science & Engineering, The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, Tianjin University, Tianjin 300072, China.
Rib fracture-related infection is a challenging complication of thoracic trauma due to the difficulty of treating it with antibiotics alone and the need for a second operation to remove the infected fixator and sterilize the surrounding infected tissue. In this study, inspired by the photocatalytic performance of and ion release from silver-based materials, including AgPO and AgS, a hybrid AgPO-AgS heterojunction was prepared based on anion exchange and a one-step calcination process to design a nonantibiotic coating aimed at preventing and treating rib fracture-related infection with short-term 808 nm near-infrared irradiation. Calcination at 250 °C enhanced the inductive effect of the phosphate radical and led to the formation of a tight nanoheterogeneous interface between AgPO and AgS, thereby promoting interfacial electron transfer and reducing the recombination of photogenerated carriers.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Donghua University, No.2999, North Renmin Road, Songjiang District, Shanghai, CHINA.
Herein, we demonstrate a two-in-one strategy for efficient neutral electrosynthesis of H2O2 via two-electron oxygen reduction reaction (2e-ORR), achieved by synergistically fine-modulating both the local microenvironment and electronic structure of indium (In) single atom (SA) sites. Through a series of finite elemental simulations and experimental analysis, we highlight the significant impact of phosphorous (P) doping on an optimized 2D mesoporous carbon carrier, which fosters a favorable microenvironment by improving the mass transfer and O2 enrichment, subsequently leading to an increased local pH levels. Consequently, an outstanding 2e-ORR performance is observed in neutral electrolytes, achieving over 95% selectivity for H2O2 across a broad voltage range of 0.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, P. R. China.
Electric-field-induced shape memory effect has potential applications in electromechanical actuator. Here, this study proposes the a phase structure design routine in (1-x)(75NaBiTiO-25SrTiO)-xPbTiO ceramics to obtain large electromechanical response and shape memory effect. It is found that the shape memory effect is closely related to the bending deformation induced by asymmetric polarization between positive and negative electrodes, which is resulted from the reductions of Bi and Pb because of electron injection from negative electrode.
View Article and Find Full Text PDFBioact Mater
May 2025
State Key Laboratory of New Ceramics and Fine Processing, Key Laboratory of Advanced Materials, School of Materials Science and Engineering, Tsinghua University, 100084, Beijing, China.
Wound healing in chronic diabetic patients remains challenging due to the multiple types of cellular dysfunction and the impairment of multidimensional microenvironments. The physical signals of structural anisotropy offer significant potential for orchestrating multicellular regulation through physical contact and cellular mechanosensing pathways, irrespective of cell type. In this study, we developed a highly oriented anisotropic nanofiber hydrogel designed to provide directional guidance for cellular extension and cytoskeletal organization, thereby achieving pronounced multicellular modulation, including shape-induced polarization of macrophages, morphogenetic maturation of Schwann cells, oriented extracellular matrix (ECM) deposition by fibroblasts, and enhanced vascularization by endothelial cells.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
Department of Physical Sciences, Indian Institute of Science Education and Research Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli, 140306, India.
Fluoropolymer alone, as an alternative to lead-based piezoelectric materials, has shown multiple challenges to develop useful sensors for solving real-world problems such as photoacoustic, ultrasound pulse echo, and other non-destructive testing. This work demonstrates the fabrication of high frequency and wide bandwidth transducers with fluoropolymer and highly polarizing cubic single crystal Barium titanate (BaTiO) ceramic composite for high resolution in-vivo photo-acoustic and ultrasound imaging. For transducer fabrication, a customized bio-compatible nanocomposite sensor film of PVDF-TrFE (Polyvinylidene fluoride trifluoroethylene)/BaTiO (BTO) is synthesized by drop and dry in heating-cum-electro-poling system for advancing polarization, crystallinity, and higher charge generation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!