1D@2D Hierarchical Structures of Co(OH) Nanosheets on NiMoO Nanorods Can Mediate Alkaline Hydrogen Evolution with Industry-Level Current Density and Stability.

Small Methods

Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.

Published: October 2022

Developing efficient electrocatalysts at ampere-scale current densities is of paramount importance to advance industrial applications of alkaline water electrolysis. Herein, a hierarchical nanostructured electrocatalyst with two-dimensional Co(OH) nanosheets grown on one-dimensional NiMoO nanorods over three-dimensional porous Ni foam substrate is designed. The resulting catalyst delivers ultrahigh hydrogen evolution reaction (HER) activity in the alkaline solution, which only requires overpotentials of 185 and 332 mV to achieve the current densities of -500 and -1000 mA cm in 1.0 m KOH, respectively, and shows robust stability at -1000 mA cm for 11 days. The unique 1D @ 2D hierarchical structures with abundant hetero-interfaces can not only expose sufficient active sites but also boost alkaline HER kinetics with fast water dissociation ability. This present work may pave a new insight to design efficient electrocatalysts with hierarchical structures for alkaline HER with industry-level current density and stability.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smtd.202200484DOI Listing

Publication Analysis

Top Keywords

hierarchical structures
12
cooh nanosheets
8
nimoo nanorods
8
hydrogen evolution
8
industry-level current
8
current density
8
density stability
8
efficient electrocatalysts
8
current densities
8
alkaline
5

Similar Publications

Due to the industry's rapid growth, the presence of organic pollutants, especially antibiotics, in water and wastewater resources is the main concern for wildlife and human health. Therefore, these days, a significant challenge is developing an efficient, sustainable, and eco-friendly photocatalyst. Natural biological models have numerous advantages compared to artificial model materials.

View Article and Find Full Text PDF

Hierarchically Engineered Self-Adaptive Nanoplatform Guided Intuitive and Precision Interventions for Deep-Seated Glioblastoma.

ACS Nano

January 2025

Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.

Glioblastoma multiforme (GBM), particularly the deep-seated tumor where surgical removal is not feasible, poses great challenges for clinical treatments due to complicated biological barriers and the risk of damaging healthy brain tissue. Here, we hierarchically engineer a self-adaptive nanoplatform (SAN) that overcomes delivery barriers by dynamically adjusting its structure, surface charge, particle size, and targeting moieties to precisely distinguish between tumor and parenchyma cells. We further devise a AN-uided ntuitive and recision ntervention (SGIPi) strategy which obviates the need for sophisticated facilities, skilled operations, and real-time magnetic resonance imaging (MRI) guidance required by current MRI-guided laser or ultrasound interventions.

View Article and Find Full Text PDF

A Crystalline 3D Supramolecular Polymer Constructed by Clamparene-Based Controllable Self-Assembly and Its Application in Photothermal Conversion.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China.

The development of well-defined three-dimensional supramolecular polymers presents significant challenges, particularly in achieving crystalline state structures. This study addresses this challenge by presenting the construction of a crystalline three-dimensional supramolecular polymer through the self-assembly of clamparene () and a naphthalene diimide derivative () in the solid state. The hierarchical self-assembly progresses from one-dimensional linear supramolecular polymers to two-dimensional supramolecular polymers and ultimately to a crystalline three-dimensional supramolecular polymer.

View Article and Find Full Text PDF

Scene categorization by Hessian-regularized active perceptual feature selection.

Sci Rep

January 2025

College of Computer Sciences, Anhui University, Hefei, 230039, China.

Decoding the semantic categories of complex sceneries is fundamental to numerous artificial intelligence (AI) infrastructures. This work presents an advanced selection of multi-channel perceptual visual features for recognizing scenic images with elaborate spatial structures, focusing on developing a deep hierarchical model dedicated to learning human gaze behavior. Utilizing the BING objectness measure, we efficiently localize objects or their details across varying scales within scenes.

View Article and Find Full Text PDF

Functional connectivity gradients and neurotransmitter maps among patients with mild cognitive impairment and depression symptoms.

J Psychiatry Neurosci

January 2025

From the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China (X. Liu, Chen, K. Liu, Yan, Wu); the Wenzhou Key Laboratory of Structural and Functional Imaging, Wenzhou, Zhejiang Province, China (X. Liu, Chen, K. Liu, Yan); the Jinhua Municipal Central Hospital, Jinhua, Zhejiang 321000, China (Chen); the Hebei General Hospital, Shijiazhuang, Hebei 050050, China (Cheng); the Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, China (Wei, Hou, Li, Guo); the Zhoushan Second People's Hospital, Zhoushan, Zhejiang 316000, China (Guo)

Background: Both depressive symptoms and neurotransmitter changes affect the characteristics of functional brain networks in clinical patients. We sought to explore how brain functional grading is organized among patients with mild cognitive impairment and depressive symptoms (D-MCI) and whether changes in brain organization are related to neurotransmitter distribution.

Methods: Using 3 T magnetic resonance imaging (MRI) we acquired functional MRI (fMRI) data from patients with D-MCI, patients with mild cognitive impairment without depression (nD-MCI), and healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!