Pure discrete spectrum and regular model sets on some non-unimodular substitution tilings.

Acta Crystallogr A Found Adv

Department of Mathematics Education, Catholic Kwandong University, Gangneung 25601, Republic of Korea.

Published: September 2022

Substitution tilings with pure discrete spectrum are characterized as regular model sets whose cut-and-project scheme has an internal space that is a product of a Euclidean space and a profinite group. Assumptions made here are that the expansion map of the substitution is diagonalizable and its eigenvalues are all algebraically conjugate with the same multiplicity. A difference from the result of Lee et al. [Acta Cryst. (2020), A76, 600-610] is that unimodularity is no longer assumed in this paper.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9434600PMC
http://dx.doi.org/10.1107/S2053273322006714DOI Listing

Publication Analysis

Top Keywords

pure discrete
8
discrete spectrum
8
regular model
8
model sets
8
substitution tilings
8
spectrum regular
4
sets non-unimodular
4
non-unimodular substitution
4
tilings substitution
4
tilings pure
4

Similar Publications

An inherently discrete-time model based on the mass action law for a heterogeneous population.

Math Biosci Eng

December 2024

Institute of of Information Technology, Warsaw University of Life Sciences - SGGW, Nowoursynowska 159 Street, building 34, 02-776 Warsaw, Poland.

In this paper, we introduce and analyze a discrete-time model of an epidemic spread in a heterogeneous population. As the heterogeneous population, we define a population in which we have two groups which differ in a risk of getting infected: a low-risk group and a high-risk group. We construct our model without discretization of its continuous-time counterpart, which is not a common approach.

View Article and Find Full Text PDF

It is very important to model the behavior of protocells as basic lifelike artificial organisms more and more accurately from the level of genomes to the level of populations. A better understanding of basic protocell communities may help us in describing more complex ecological systems accurately. In this article, we propose a new comprehensive, bilevel mathematical model of a community of three protocell species (one generalist and two specialists).

View Article and Find Full Text PDF

Red emission in crystals has been observed with an ultra-small-single-benzenic -fluorophore () with a molecular weight (MW) of only 197 Da, bettering the literature report of fluorophores with the lowest MW = 252 Da. Supramolecular extensive hydrogen-bonding and J-aggregate type centrosymmetric discrete-dimers or a 1D chain of s led to red emission ( = 610-636 nm) in crystals. Unlike in the solution phase showing one absorption band, in thin films and in crystals the transition from the S state to both the S state and S state becomes feasible.

View Article and Find Full Text PDF

Unraveling the neural signatures: Distinct pallidal patterns in dystonia subtypes.

Parkinsonism Relat Disord

January 2025

Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA; Department of Neurology, Case Western Reserve University, Cleveland, OH, USA; Neurological Institute, University Hospitals, Cleveland, OH, USA; Neurology Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH, USA. Electronic address:

Introduction: Dystonia manifests as slow twisting movements (pure dystonia) or repetitive, jerky motions (jerky dystonia). Dystonia can coexist with myoclonus (myoclonus dystonia) or tremor (tremor dystonia). Each of these presentations can have distinct etiology, can involve discrete sensorimotor networks, and may have characteristic neurophysiological signature.

View Article and Find Full Text PDF

Observation of Thouless pumping of light in quasiperiodic photonic crystals.

Proc Natl Acad Sci U S A

November 2024

State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China.

Topological transport is determined by global properties of physical media where it occurs and is characterized by quantized amounts of adiabatically transported quantities. Discovered for periodic potential, it was also explored in disordered and discrete quasiperiodic systems. Here, we report on experimental observation of pumping of a light beam in a genuinely continuous incommensurate photorefractive quasicrystal emulated by its periodic approximants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!