Climate change has been shown to advance spring phenology, increase the number of insect generations per year (multivoltinism) and increase pathogen infection levels. However, we lack insights into the effects of plant spring phenology and the biotic environment on the preference and performance of multivoltine herbivores and whether such effects extend into the later part of the growing season. To this aim, we used a multifactorial growth chamber experiment to examine the influence of spring phenology on plant pathogen infection, and how the independent and interactive effects of spring phenology and plant pathogen infection affect the preference and performance of multigenerational attackers (the leaf miner Tischeria ekebladella and the aphid Tuberculatus annulatus) on the pedunculate oak in the early, mid and late parts of the plant growing season. Pathogen infection was highest on late phenology plants, irrespective of whether inoculations were conducted in the early, mid or late season. The leaf miner consistently preferred to oviposit on middle and late phenology plants, as well as healthy plants, during all parts of the growing season, whereas we detected an interactive effect between spring phenology and pathogen infection on the performance of the leaf miner. Aphids preferred healthy, late phenology plants during the early season, healthy plants during the mid season, and middle phenology plants during the late season, whereas aphid performance was consistently higher on healthy plants during all parts of the growing season. Our findings highlight that the impact of spring phenology on pathogen infection and the preference and performance of insect herbivores is not restricted to the early season, but that its imprint is still present - and sometimes equally strong - during the peak and end of the growing season. Plant pathogens generally negatively affected herbivore preference and performance, and modulated the effects of spring phenology. We conclude that spring phenology and pathogen infection are two important factors shaping the preference and performance of multigenerational plant attackers, which is particularly relevant given the current advance in spring phenology, pathogen outbreaks and increase in voltinism with climate change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826206 | PMC |
http://dx.doi.org/10.1111/1365-2656.13804 | DOI Listing |
PeerJ
January 2025
College of Agriculture, Shanxi Agricultural University, Shanxi, Jinzhong, China.
It is crucial to elucidate the impact of climate change on wheat production in China. This article provides a review of the current climate change scenario and its effects on wheat cultivation in China, along with an examination of potential future impacts and possible response strategies. Against the backdrop of climate change, several key trends emerge: increasing temperature during the wheat growing season, raising precipitation, elevated CO concentration, and diminished radiation.
View Article and Find Full Text PDFNat Ecol Evol
January 2025
PLECO Plants and Ecosystems Research Group, Department of Biology, University of Antwerp, Wilrijk, Belgium.
In the temperate zone, deciduous trees exhibit clear above-ground seasonality, marked by a halt in wood growth that represents the completion of wood formation in autumn and reactivation in spring. However, the growth seasonality of below-ground woody organs, such as coarse roots, has been largely overlooked. Here we use tree monitoring data and pot experiments involving saplings to examine the late-season xylem development of stem and coarse roots with leaf phenology in four common deciduous tree species in Western Europe.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, P.O. Box 1066 Blindern, NO-0316, Oslo, Norway.
The timing of migration is fundamental for species exploiting seasonally variable environments. For ungulates, earlier spring migration is expected with earlier vegetation green-up. However, other drivers, such as access to agricultural farmland and variation in local conditions, are also known to affect migration.
View Article and Find Full Text PDFBiol Lett
January 2025
Department of Forestry and Natural Resources, Purdue University, Forestry Building, 195 Marsteller Street, West Lafayette, IN 47907, USA.
Temperate fishes often spawn in response to environmental cues, such as temperature, thereby facilitating larval emergence concurrent with suitable biotic and abiotic conditions, such as plankton blooms. Climatic changes may alter the reproductive phenology of spring- and autumn-spawning freshwater fish populations. Such effects may depend on the sensitivity of reproductive phenology to ambient temperatures.
View Article and Find Full Text PDFTree Physiol
December 2024
Université du Québec à Chicoutimi, laboratoire écosystèmes terrestres boréaux (EcoTer) Chicoutimi, Québec, Canada.
In temperate and boreal ecosystems, trees undergo dormancy to avoid cold temperatures during the unfavorable season. This phase includes changes in frost hardiness, which is minimal during the growing season and reaches its maximum in winter. Quantifying frost hardiness is important to assess the frost risk and shifts of species distribution under a changing climate.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!