Measure Dx: Implementing pathways to discover and learn from diagnostic errors.

Int J Qual Health Care

Department of Medicine, Baylor College of Medicine, 7200 Cambridge St., 8th Floor, Houston, TX 77030, USA.

Published: September 2022

Despite the high frequency of diagnostic errors, multiple barriers, including measurement, make it difficult learn from these events. This article discusses Measure Dx, a new resource from the Agency for Healthcare Research and Quality that translates knowledge from diagnostic safety measurement research into actionable recommendations. Measure Dx guides healthcare organizations to detect, analyze, and learn from diagnostic safety events as part of a continuous learning and feedback cycle. Wider adoption of Measure Dx, along with the implementation of solutions that result, can advance new frontiers in reducing preventable diagnostic harm to patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463874PMC
http://dx.doi.org/10.1093/intqhc/mzac068DOI Listing

Publication Analysis

Top Keywords

learn diagnostic
8
diagnostic errors
8
diagnostic safety
8
diagnostic
5
measure
4
measure implementing
4
implementing pathways
4
pathways discover
4
discover learn
4
errors despite
4

Similar Publications

Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.

View Article and Find Full Text PDF

Developing a new diagnostic prediction model for osteoarthritis (OA) to assess the likelihood of individuals developing OA is crucial for the timely identification of potential populations of OA. This allows for further diagnosis and intervention, which is significant for improving patient prognosis. Based on the NHANES for the periods of 2011-2012, 2013-2014, and 2015-2016, the study involved 11,366 participants, of whom 1,434 reported a diagnosis of OA.

View Article and Find Full Text PDF

Prostate cancer is a disease which poses an interesting clinical question: Should it be treated? Only a small subset of prostate cancers are aggressive and require removal and treatment to prevent metastatic spread. However, conventional diagnostics remain challenged to risk-stratify such patients; hence, new methods of approach to biomolecularly sub-classify the disease are needed. Here we use an unsupervised self-organising map approach to analyse live-cell Raman spectroscopy data obtained from prostate cell-lines; our aim is to exemplify this method to sub-stratify, at the single-cell-level, the cancer disease state using high-dimensional datasets with minimal preprocessing.

View Article and Find Full Text PDF

Prediction of pulmonary embolism by an explainable machine learning approach in the real world.

Sci Rep

January 2025

Department of Respiratory and Critical Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, People's Republic of China.

In recent years, large amounts of researches showed that pulmonary embolism (PE) has become a common disease, and PE remains a clinical challenge because of its high mortality, high disability, high missed and high misdiagnosed rates. To address this, we employed an artificial intelligence-based machine learning algorithm (MLA) to construct a robust predictive model for PE. We retrospectively analyzed 1480 suspected PE patients hospitalized in West China Hospital of Sichuan University between May 2015 and April 2020.

View Article and Find Full Text PDF

This survey explores the transformative impact of foundation models (FMs) in artificial intelligence, focusing on their integration with federated learning (FL) in biomedical research. Foundation models such as ChatGPT, LLaMa, and CLIP, which are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback, represent significant advancements in machine learning. These models, with their ability to generate coherent text and realistic images, are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!