Despite the high frequency of diagnostic errors, multiple barriers, including measurement, make it difficult learn from these events. This article discusses Measure Dx, a new resource from the Agency for Healthcare Research and Quality that translates knowledge from diagnostic safety measurement research into actionable recommendations. Measure Dx guides healthcare organizations to detect, analyze, and learn from diagnostic safety events as part of a continuous learning and feedback cycle. Wider adoption of Measure Dx, along with the implementation of solutions that result, can advance new frontiers in reducing preventable diagnostic harm to patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9463874 | PMC |
http://dx.doi.org/10.1093/intqhc/mzac068 | DOI Listing |
Sci Rep
January 2025
Cardiovascular Research Center, Rajaie Cardiovascular, Medical, and Research Center, University of Medical Sciences, Tehran, Iran.
Assessing myocardial viability is crucial for managing ischemic heart disease. While late gadolinium enhancement (LGE) cardiovascular magnetic resonance (CMR) is the gold standard for viability evaluation, it has limitations, including contraindications in patients with renal dysfunction and lengthy scan times. This study investigates the potential of non-contrast CMR techniques-feature tracking strain analysis and T1/T2 mapping-combined with machine learning (ML) models, as an alternative to LGE-CMR for myocardial viability assessment.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Rheumatology and Immunology, The First Affiliated Hospital of Shantou University Medical College, Shantou, 515041, China.
Developing a new diagnostic prediction model for osteoarthritis (OA) to assess the likelihood of individuals developing OA is crucial for the timely identification of potential populations of OA. This allows for further diagnosis and intervention, which is significant for improving patient prognosis. Based on the NHANES for the periods of 2011-2012, 2013-2014, and 2015-2016, the study involved 11,366 participants, of whom 1,434 reported a diagnosis of OA.
View Article and Find Full Text PDFSci Rep
January 2025
School of Physics, Engineering and Technology, University of York, Heslington, York, YO10 5DD, UK.
Prostate cancer is a disease which poses an interesting clinical question: Should it be treated? Only a small subset of prostate cancers are aggressive and require removal and treatment to prevent metastatic spread. However, conventional diagnostics remain challenged to risk-stratify such patients; hence, new methods of approach to biomolecularly sub-classify the disease are needed. Here we use an unsupervised self-organising map approach to analyse live-cell Raman spectroscopy data obtained from prostate cell-lines; our aim is to exemplify this method to sub-stratify, at the single-cell-level, the cancer disease state using high-dimensional datasets with minimal preprocessing.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Respiratory and Critical Care Medicine, Changhai Hospital, The Second Military Medical University, Shanghai, People's Republic of China.
In recent years, large amounts of researches showed that pulmonary embolism (PE) has become a common disease, and PE remains a clinical challenge because of its high mortality, high disability, high missed and high misdiagnosed rates. To address this, we employed an artificial intelligence-based machine learning algorithm (MLA) to construct a robust predictive model for PE. We retrospectively analyzed 1480 suspected PE patients hospitalized in West China Hospital of Sichuan University between May 2015 and April 2020.
View Article and Find Full Text PDFBioData Min
January 2025
School of Computer Science, Fudan University, Shanghai, China.
This survey explores the transformative impact of foundation models (FMs) in artificial intelligence, focusing on their integration with federated learning (FL) in biomedical research. Foundation models such as ChatGPT, LLaMa, and CLIP, which are trained on vast datasets through methods including unsupervised pretraining, self-supervised learning, instructed fine-tuning, and reinforcement learning from human feedback, represent significant advancements in machine learning. These models, with their ability to generate coherent text and realistic images, are crucial for biomedical applications that require processing diverse data forms such as clinical reports, diagnostic images, and multimodal patient interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!