A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Phasing of de novo mutations using a scaled-up multiple amplicon long-read sequencing approach. | LitMetric

De novo mutations (DNMs) play an important role in severe genetic disorders that reduce fitness. To better understand their role in disease, it is important to determine the parent-of-origin and timing of mutational events that give rise to these mutations, especially in sex-specific developmental disorders such as male infertility. However, currently available short-read sequencing approaches are not ideally suited for phasing, as this requires long continuous DNA strands that span both the DNM and one or more informative single-nucleotide polymorphisms. To overcome these challenges, we optimized and implemented a multiplexed long-read sequencing approach using Oxford Nanopore technologies MinION platform. We focused on improving target amplification, integrating long-read sequenced data with high-quality short-read sequence data, and developing an anchored phasing computational method. This approach handled the inherent phasing challenges of long-range target amplification and the normal accumulation of sequencing error associated with long-read sequencing. In total, 77 of 109 DNMs (71%) were successfully phased and parent-of-origin identified. The majority of phased DNMs were prezygotic (90%), the accuracy of which is highlighted by an average mutant allele frequency of 49.6% and standard error of 0.84%. This study demonstrates the benefits of employing an integrated short-read and long-read sequencing approach for large-scale DNM phasing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826063PMC
http://dx.doi.org/10.1002/humu.24450DOI Listing

Publication Analysis

Top Keywords

long-read sequencing
16
sequencing approach
12
novo mutations
8
target amplification
8
sequencing
6
phasing
5
long-read
5
phasing novo
4
mutations scaled-up
4
scaled-up multiple
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!