In this study, lipase A from Candida antarctica (CALA) was immobilized onto the macroporous resin NKA-9. Immobilization conditions (pH, time and CALA concentration) were studied, enzymatic activity and immobilization efficiency (IE) up to 968.89 U/g and 53.19% were respectively obtained under optimal conditions (immobilization pH 5.0, time 5 h and CALA concentration at 30 mg/mL). Then, the NKA-9 supported CALA (CALA@NKA-9) samples were used to catalyze glycerolysis in solvent-free system. With 0.25 g of the present CALA@NKA-9 (soybean oil 3.52 g and glycerol 0.184 g) and after 12 h reaction at 50 °C, diacylglycerols (DAG) content up to 64.37% and triacylglycerols (TAG) conversion at 83.33% were obtained. The relationship between temperature and TAG conversion was LnV = 13.9310-6.4212/T for CALA@NKA-9. Meanwhile, the activation energy (Ea) of CALA@NKA-9 was calculated to be 53.39 kJ/mol. In addition, reusability in the glycerolysis reaction was also evaluated, and 57.82% of the initial glycerolysis activity was retained after 9 consecutive applications. Furthermore, the CALA@NKA-9 was also used to catalyze the esterification (esterification of fatty acids with glycerol), however, the present CALA@NKA-9 cannot initiate the esterification. Therefore, the present CALA@NKA-9 is shown to be potential for DAG production through glycerolysis reaction.

Download full-text PDF

Source
http://dx.doi.org/10.5650/jos.ess22028DOI Listing

Publication Analysis

Top Keywords

candida antarctica
8
macroporous resin
8
resin nka-9
8
time cala
8
cala concentration
8
tag conversion
8
glycerolysis reaction
8
cala@nka-9
7
glycerolysis
5
immobilization
4

Similar Publications

Unlabelled: Bioprospecting can uncover new yeast strains and species with interesting ecological characteristics and valuable biotechnological traits, such as the capacity to convert different carbon sources from industrial side and waste streams into bioproducts. In this study, we conducted untargeted yeast bioprospecting in tropical West Africa, collecting 1,996 isolates and determining their growth in 70 different environments. While the collection contains numerous isolates with the potential to assimilate several cost-effective and sustainable carbon and nitrogen sources, we focused on characterizing the 203 strains capable of growing on lactose, the main carbon source in the abundant side stream cheese whey from dairy industries.

View Article and Find Full Text PDF

This study investigates the intricate dynamics underlying lipase performance in organic solvents using comprehensive molecular dynamics (MD) simulations, supported by enzyme kinetics data. The study reveals that a single criterion can neither predict nor explain lipase activity in organic solvents, indicating the need for a comprehensive approach. Three lipases were included in this study: lipase B (CALB), lipase (RML), and lipase (TLL).

View Article and Find Full Text PDF

The process to synthesize biodiesel is well-developed and optimized to overcome the disadvantages like the competition with agriculture using feedstock, and the problematics in the process. Oils from waste and enzymatic catalysis have proven to be good solutions to these problems. Lipases are currently the most commonly used enzymes in the transesterification of oils; nevertheless, enzymes have a high cost and must be immobilized to offer repetitive reuse.

View Article and Find Full Text PDF

This report describes the asymmetric synthesis of a focused library of enantiopure structured triacylglycerols (TAGs) comprised of a single saturated fatty acid (C6, C8, C10, C12, C14 or C16), a pure bioactive n-3 polyunsaturated fatty acid (EPA or DHA) and a potent drug (ibuprofen or naproxen) intended as a novel type of prodrug. One of the terminal -1 or -3 positions of the glycerol backbone is occupied with a saturated fatty, the remaining one with a PUFA, and the drug entity is present in the -2 position. This was accomplished by a six-step chemoenzymatic approach starting from enantiopure ()- and ()-solketals.

View Article and Find Full Text PDF

Constitutive Overexpression of CRZ1 in Reveals Its Ability to Enhance Recombinant Lipase Production.

J Agric Food Chem

December 2024

Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.

The filamentous fungus is extensively utilized in the realm of recombinant protein expression owing to its well-established protein production systems. However, the potential for efficient and convenient protein production in has not been fully harnessed. To further increase the production of recombinant lipase lipase B (CalB), we overexpressed seven transcription activators and found that overexpression of the calcineurin CRZ1 could significantly enhance CalB production by 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!