[Coordination chemogenetics for regulation of glutamate receptors in neuron].

Nihon Yakurigaku Zasshi

Department of Biomolecular Engineering, Graduate School of Engineering, Nagoya University.

Published: September 2022

Transmembrane receptors transmit extracellular information into cells. In many cases, protein families are composed of highly homologous subtypes, each of which has unique cellular functions. Therefore, it is highly desired for understanding the physiological roles of the receptor in tissues or animals. However, it is difficult to control the activity of receptors in a cell-type- and subtype-specific manner with high temporal resolution using traditional pharmacological or genetic engineering methods. Recently, chemogenetics has been focused on controlling the cellular signaling in a cell-type-specific manner, which allows for elucidating the function of specific cell types with high temporal resolution. However, conventional chemogenetics are not suitable for understanding the roles of each receptor. Therefore, we have developed a chemogenetic method, termed coordination chemogenetics, in which coordination chemistry and genetic engineering are combined. The coordination chemogenetics enabled artificial activation of ionotropic glutamate receptor (GluA2) and metabotropic glutamate receptor (mGlu1). A palladium (Pd) complex successfully activated mGlu1 in mGlu1(N264H) knock-in mice, demonstrating that endogenous mGlu1 activation is sufficient to evoke a key cellular mechanism of synaptic plasticity that underlies motor learning in the cerebellum. We also expanded the coordination chemogenetics for orthogonal activation of mGlu1 activity using Cu, Zn, and Pd complexes for analyzing the individual roles of mGlu1 simultaneously. Notably, coordination chemogenetics can be expanded to apply selective inhibition of transmembrane receptors, and the dissociation is much slower than that of conventional inhibitors. Thus, coordination chemogenetics would be a unique method for controlling mGlu1 in a cell-type-specific manner.

Download full-text PDF

Source
http://dx.doi.org/10.1254/fpj.22047DOI Listing

Publication Analysis

Top Keywords

coordination chemogenetics
20
transmembrane receptors
8
roles receptor
8
high temporal
8
temporal resolution
8
genetic engineering
8
cell-type-specific manner
8
glutamate receptor
8
chemogenetics
7
coordination
6

Similar Publications

Cognitive processes such as action planning and decision-making require the integration of multiple sensory modalities in response to temporal cues, yet the underlying mechanism is not fully understood. Sleep has a crucial role for memory consolidation and promoting cognitive flexibility. Our aim is to identify the role of sleep in integrating different modalities to enhance cognitive flexibility and temporal task execution while identifying the specific brain regions that mediate this process.

View Article and Find Full Text PDF

Background And Aims: Gastrointestinal motility persists when peripheral cholinergic signaling is blocked genetically or pharmacologically, and a recent study suggests nitric oxide drives propagating neurogenic contractions.

Methods: To determine the neuronal substrates that underlie these contractions, we measured contractile-associated movements together with calcium responses of cholinergic or nitrergic myenteric neurons in un-paralyzed ex vivo preparations of whole mouse colon. We chose to look at these two subpopulations because they encompass nearly all myenteric neurons.

View Article and Find Full Text PDF

Native ion channels play key roles in biological systems, and engineered versions are widely used as chemogenetic tools and in sensing devices. Protein design has been harnessed to generate pore-containing transmembrane proteins, but the capability to design ion selectivity based on the interactions between ions and selectivity filter residues, a crucial feature of native ion channels, has been constrained by the lack of methods to place the metal-coordinating residues with atomic-level precision. Here we describe a bottom-up RFdiffusion-based approach to construct Ca channels from defined selectivity filter residue geometries, and use this approach to design symmetric oligomeric channels with Ca selectivity filters having different coordination numbers and different geometries at the entrance of a wide pore buttressed by multiple transmembrane helices.

View Article and Find Full Text PDF

Exploring memory-related network via dorsal hippocampus suppression.

Netw Neurosci

December 2024

Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, USA.

Memory is a complex brain process that requires coordinated activities in a large-scale brain network. However, the relationship between coordinated brain network activities and memory-related behavior is not well understood. In this study, we investigated this issue by suppressing the activity in the dorsal hippocampus (dHP) using chemogenetics and measuring the corresponding changes in brain-wide resting-state functional connectivity (RSFC) and memory behavior in awake rats.

View Article and Find Full Text PDF

Dexmedetomidine accelerates photoentrainment and affects sleep structure through the activation of SCN neurons.

Commun Biol

December 2024

Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China.

Dexmedetomidine (DexM), a highly selective α-adrenoceptor agonist, significantly reduces postoperative adverse effects, including sleep and circadian rhythm disruptions. Vasoactive intestinal peptide neurons in the suprachiasmatic nucleus (SCN) regulate the synchronization of circadian rhythms with the external environment in mammals. We investigate the effects of DexM on sleep and circadian rhythms, as well as the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!