This study was designed to explore the potential of gypenosides as a novel natural stabilizer for the production of nanosuspensions. The gypenosides-stabilized quercetin nanosuspensions(QUE-NS) were prepared using the high-speed shearing and high-pressure homogenization method with quercetin as a model drug, followed by their in vitro evaluation.Based on the measured mean particle size and polydispersity index(PDI) of QUE-NS,the single factor experiment was conducted to optimize the preparation process parameters.The freeze-drying method was used to transform QUE-NS into freeze-dried powders, whose storage stability and saturation solubility were then studied.Moreover, the effects of pH and ionic strength on the physical stability of the nanosuspension system were examined.According to the results, the optimized process parameters were listed as follows: shear rate 13 000 r·min~(-1),shear time 2 min, homogenization pressure 100 MPa, and homogenization frequency 12 times.The mean particle size of QUE-NS prepared under the optimum process conditions was(461.9±2.4) nm, and the PDI was 0.059±0.016.During the two months of storage at room temperature, the freeze-dried QUE-NS powders remained stable.The saturation solubility of freeze-dried QUE-NS powders was proved higher than those of quercetin and the physical mixture.The results of stability testing demonstrated that QUE-NS stabilized with gypenosides exhibited good stability within the pH range of 6 to 8,while coalescence was prone to occur in the presence of salt.Overall, gypenosides is expected to become a new natural stabilizer for the preparation of nanosuspensions.

Download full-text PDF

Source
http://dx.doi.org/10.19540/j.cnki.cjcmm.20210928.301DOI Listing

Publication Analysis

Top Keywords

natural stabilizer
8
particle size
8
saturation solubility
8
freeze-dried que-ns
8
que-ns powders
8
que-ns
5
[preparation vitro
4
vitro evaluation
4
quercetin
4
evaluation quercetin
4

Similar Publications

Decoding Extracellular Protein Glycosylation in Human Health and Disease.

Annu Rev Anal Chem (Palo Alto Calif)

January 2025

Department of Chemistry, Yale University, New Haven, Connecticut, USA;

Protein glycosylation, the covalent attachment of carbohydrate, or glycan, structures onto the protein backbone, is one of the most complex and heterogeneous post-translational modifications (PTMs). Extracellular protein glycosylation, in particular N- and mucin-type O-glycosylation, plays pivotal roles in a number of biophysical and biochemical processes, such as protein folding and stability, cell adhesion, signaling, and protection. As such, aberrant glycosylation is implicated in a variety of diseases, including cancer.

View Article and Find Full Text PDF

ThCTi@(6)-C: Th═C Double Bond in a Mixed Actinide-Transition Metal Cluster.

J Am Chem Soc

January 2025

College of Chemistry, Chemical Engineering and Materials Science, and State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu 215123, P. R. China.

A thorium-carbon double bond that corresponds to the sum of theoretical covalent double bond radii has long been sought after in the study of actinide-ligand multiple bonding as a synthetic target. However, the stabilization of this chemical bond remains a great challenge to date, in part because of a relatively poor energetic matching between 5f-/6d- orbitals of thorium and the 2s-/2p- frontier orbitals of carbon. Herein, we report the successful synthesis of a thorium-carbon double bond in a carbon-bridged actinide-transition metal cluster, i.

View Article and Find Full Text PDF

As a traditional Chinese medicine, Sanao decoction (SAD) has been used to treat chronic obstructive pulmonary disease (COPD) for multi-years. However, the potential mechanism and targets for its effects of SAD remain unknown. The 94 components of SAD were identified by UPLC-LTQ-Orbitrap MS.

View Article and Find Full Text PDF

Cyclin-dependent kinases 4 and 6 (CDK4/6) are crucial regulators of cell cycle progression and represent important therapeutic targets in breast cancer. This study employs a comprehensive computational approach to identify novel CDK4/6 inhibitors from marine natural products. We utilized structure-based virtual screening of the CMNPD database and MNP library, followed by rigorous filtering based on drug-likeness criteria, PAINS filter, ADME properties, and toxicity profiles.

View Article and Find Full Text PDF

The main protease (M) of SARS-CoV-2 is a key drug target for the development of antiviral therapeutics. Here, we designed and synthesized a series of small-molecule peptidomimetics with various cysteine-reactive electrophiles. Several compounds were identified as potent SARS-CoV-2 M inhibitors, including compounds (IC = 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!