Recent studies have highlighted the biological significance of exosomes and mA modifications in immunity. Nonetheless, it remains unclear whether the mA modification gene in exosomes of body fluid has potential roles in the tumor microenvironment (TME). Herein, we identified three different mA-related exosomal gene modification patterns based on 59 mA-related exosomal genes, which instructed distinguishing characteristics of TME in colon cancer (CC). We demonstrated that these patterns could predict the stage of tumor inflammation, subtypes, genetic variation, and patient prognosis. Furthermore, we developed a scoring mode-mA-related exosomal gene score (MREGS)-by detecting the level of mA modification in exosomes to classify immune phenotypes. Low MREGS, characterized by prominent survival and immune activation, was linked to a better response to anti-PDL1 immunotherapy. In contrast, the higher MREGS group displayed remarkable stromal activation, high activity of innate immunocytes, and a lower survival rate. Hence, this work provides a novel approach for evaluating TME cell infiltration in colon cancer and guiding more effective immunotherapy strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9423980PMC
http://dx.doi.org/10.1155/2022/9451480DOI Listing

Publication Analysis

Top Keywords

exosomal gene
12
colon cancer
12
modification patterns
8
ma-related exosomal
8
regulator-based exosomal
4
gene
4
gene methylation
4
modification
4
methylation modification
4
patterns identify
4

Similar Publications

Radiotherapy resistance is one of the main reasons for the dismal clinical outcome of patients with esophageal squamous cell carcinoma (ESCC). Therefore, clarifying the targets and molecular mechanisms of radiotherapy resistance in ESCC is of great theoretical and clinical significance to enhance the efficacy of radiotherapy. In this study, GPR37 was identified as a key factor facilitating ESCC radiosensitization.

View Article and Find Full Text PDF

Gelatin methacryloyl @MP196/exos hydrogel induced neutrophil apoptosis and macrophage M2 polarization to inhibit periodontal bone loss.

Colloids Surf B Biointerfaces

December 2024

Department of Periodontology, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, No.12 Qixiangtai Road, Heping District, Tianjin 300070,  PR China; Tianjin Medical University Institute of Stomatology, No.12 Qixiangtai Road, Heping District, Tianjin 300070, PR China. Electronic address:

Objectives: Periodontitis is an inflammatory and destructive disease caused by dental plaque, which can result in the immune microenvironment disorders and loss of periodontal support tissue. In order to promote the restoration of local microenvironment stability, a functional biomaterial Gelatin methacryloyl @MP196/exos based on characteristics of disease occurrence is designed.

Methods: Transmission electron microscopy, nanosight particle tracking analysis and western blot analysis were applied to prove the presence of exos in GelMA@MP196/exos.

View Article and Find Full Text PDF

Morning-time heart attacks are associated with an ablation in the sleep-time dip in blood pressure, the mechanism of which is unknown. The epigenetic changes are the hallmark of sleep and circadian clock disruption and homocystinuria (HHcy). The homocystinuria causes ablation in the dip in blood pressure during sleep.

View Article and Find Full Text PDF

Hepatocellular carcinoma (HCC) is the most common form of liver cancer in humans, with an increasing incidence worldwide. The current study aimed to explore the molecular mechanisms that inhibit the proliferation of HepG2 cells, a hepatoblastoma-derived cell line. MSC-derived exosomes (UC-MSCs) were prepared with a median particle size (N50) of 135.

View Article and Find Full Text PDF

Exosome-derived miR-107 targeting caveolin-1 promotes gallstone progression by regulating the hepatobiliary cholesterol secretion pathway.

Biochem Pharmacol

December 2024

Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan 250021, Shandong Province, China. Electronic address:

Cholesterol gallstone is a disease with high incidence and quality of life. This study aimed to investigate the function of exosome-derived miRNA in gallstone formation and its related molecular mechanism. Exosomes were extracted and isolated from patients with gallbladder stones and age- and gender-matched healthy controls, and exosomal miRNA expression was compared between the two groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!