Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Understanding organic carbon accumulations in soils is crucially essential concerning carbon sequestration, fighting climate change, increasing land productivity, improving soil properties, providing energy to the microbial community, enhancing ecological restoration, and reversing global environmental damage. This study was aimed at assessing the effects of land-use-cover change (LULC) on soil organic carbon (SOC), its' stock potential, and bulk-density (BD) along slope position in the Coka watershed. Replicated soil samples had been collected and composited from 30 cm depth topsoil of five major land use types and three slope positions. This result showed that significantly () lowest and highest mean of soil organic carbon stock (SOCS) was observed under bare lands (37.835 Mg ha) and bushlands (144.582 Mg ha), respectively which was the same for SOC concentration. Barelands lose 3.82 times (3.82x) higher SOCS than bushland and 2.68x more SOCS than forestland. Both SOC-stock and SOC showed significant () differences among slope positions, which were the highest in lower-slope followed by middle-slope, which had 1.8 and 2.6x higher than in middle-slope and upper-slope positions, respectively. Thus, the multivariate-test result divulges that LULC along slope positions has a strongly significant () main and interaction effect on SOCS in the area. Therefore, the potential contribution of bushland and forestland uses should be improved for SOC sequestration, soil productivity improvement, and environmental protection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421391 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2022.e10261 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!