Although overall survival rates of patients infected with human immunodeficiency virus (HIV) have been significantly improved by antiretroviral therapy (ART), chronic comorbidities associated with HIV result in a worsening quality of life. Pulmonary arterial hypertension (PAH) is the most prevalent comorbidity associated with HIV infection. Despite low viremia and a non-replicative state maintained by ART, few people develop PAH. Previous data from animal models and human pulmonary microvascular endothelial cells (HPMVECs) suggests a constellation of events occurring during the propagation of HIV-associated PAH (HIV-PAH). However, these studies have not successfully isolated HIV virions, HIV-DNA, protein 24 antigen (p24), or HIV-RNA from the pulmonary endothelial cells (ECs). It provides an insight into an ongoing inflammatory process that could be attributed to viral proteins. Several studies have demonstrated the role of viral proteins on vascular remodeling. A composite of chronic inflammatory changes mediated by cytokines and growth factors along with several inciting risk factors such as Hepatitis C virus (HCV) co-infection, genetic factors, male predominance, illegal drug usage, and duration of HIV infection have led to molecular changes that result in an initial phase of apoptosis followed by the formation of apoptotic resistant hyperproliferative ECs with altered phenotype. This study aims to identify the risk factors and mechanisms behind HIV-PAH pathobiology at the host-pathogen interface at the intracellular level.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9418639 | PMC |
http://dx.doi.org/10.7759/cureus.27390 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!