The complete chloroplast genome of 'Fugui' (Rosaceae).

Mitochondrial DNA B Resour

College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.

Published: August 2022

'Fugui' is newly bred cultivar. Here, we report its complete chloroplast genome. The length of the 'Fugui' chloroplast genome is 157,948 bp, with a large single-copy region of 85,948 bp, a small single-copy region of 19,128 bp and a pair of inverted repeat regions of 26,436 bp each. The genome contains 90 protein-coding genes, 65 transfer RNA genes and 9 ribosomal RNA genes. In addition, the genome contains 67 simple sequence repeats. Phylogenetic analysis revealed that 'Fugui' is genetically related to previously reported .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9423843PMC
http://dx.doi.org/10.1080/23802359.2022.2106796DOI Listing

Publication Analysis

Top Keywords

chloroplast genome
12
complete chloroplast
8
single-copy region
8
rna genes
8
genome
5
'fugui'
4
genome 'fugui'
4
'fugui' rosaceae
4
rosaceae 'fugui'
4
'fugui' newly
4

Similar Publications

Dodder (Cuscuta spp.), particularly the species Cuscuta chinensis, is a parasitic weed known for its ability to infest a broad spectrum of plant species, thereby significantly affecting the stability and functionality of native ecosystems (Zhang, Xu et al. 2021).

View Article and Find Full Text PDF

Species of the genus have the potential to be natural medicines and have industrial fibre production uses. Many species of this genus are morphologically similar and are difficult to distinguish, especially when their morphology is distorted. This dataset includes sequence information of several DNA regions isolated from the genome of , namely ITS (from the nuclear genome), , trnL-trnF, trnH-psbA, and (from the chloroplast genome) and phylogenetic analysis results based on the isolated sequences.

View Article and Find Full Text PDF

Comparative chloroplast genome analyses provide new insights into molecular markers for distinguishing Arnebiae Radix and its substitutes (tribe Lithospermeae, Boraginaceae).

Phytomedicine

December 2024

State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, PR China; Key Laboratory of Biology and Cultivation of Herb Medicine, Ministry of Agriculture and Rural Affairs, Beijing, 100700, PR China. Electronic address:

Background: Arnebiae Radix has long been used in traditional medicine for its pleiotropic properties. However, distinguishing Arnebiae Radix from its substitutes or closely related species has been challenging due to limited phenotypic characteristics.

Purpose: We aimed to identify the molecular markers for distinguishing Arnebiae Radix from its confusion species.

View Article and Find Full Text PDF

The green microalga Chlamydomonas reinhardtii is a promising host organism for the production of valuable compounds. Engineering the Chlamydomonas chloroplast genome offers several advantages over the nuclear genome, including targeted gene insertion, lack of silencing mechanisms, potentially higher protein production due to multiple genome copies and natural substrate abundance for metabolic engineering. Tuneable expression systems can be used to minimize competition between heterologous production and host cell viability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!