Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Monitoring and detection of invasive alien plant species are necessary for effective management and control measures. Although efforts have been made to detect alien trees using satellite images, the detection of alien herbaceous species has been difficult. In this study, we examined the possibility of detecting non-native plants using deep learning on images captured by two action cameras. We created a model for each camera using the chopped picture method. The models were able to detect the alien plant (tall goldenrod) and obtained an average accuracy of 89%. This study proved that it is possible to automatically detect exotic plants using inexpensive action cameras through deep learning. This advancement suggests that, in the future, citizen science may be useful for conducting distribution surveys of alien plants in a wide area at a low cost.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8987844 | PMC |
http://dx.doi.org/10.1270/jsbbs.21062 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!