Urothelial cells of the urinary bladder play a critical role in the development and progression of interstitial cystitis/bladder pain syndrome (IC/BPS), a chronic and debilitating inflammatory disease. Given the lack of data on the exact phenotype and function of urothelial cells in an inflammatory setting (as in IC/BPS), we performed the first in-depth characterization of these cells using RNA sequencing, qPCR, ELISA, Western blot, and immunofluorescence. After TNFα stimulation, urothelial cells in the model of IC/BPS showed marked upregulation of several proinflammatory mediators, such as SAA, C3, IFNGR1, IL1α, IL1β, IL8, IL23A, IL32, CXCL1, CXCL5, CXCL10, CXCL11, TNFAIPR, TNFRSF1B, and BIRC3, involved in processes and pathways of innate immunity, including granulocyte migration and chemotaxis, inflammatory response, and complement activation, as well as TLR-, NOD-like receptor- and NFkB-signaling pathways, suggesting their active role in shaping the local immune response of the bladder. Our study demonstrates that the TNFα-stimulated urothelial cells recapitulate key observations found in the bladders of patients with IC/BPS, underpinning their utility as a suitable model for understanding IC/BPS mechanisms and confirming the role of TNFα signaling as an important component of the associated pathology. The present study also identifies novel upregulated gene targets of TNFα in urothelial cells, including genes encoding the acute phase protein SAA, complement component C3, and the cytokine receptor IFNGR1, which could be exploited as therapeutic targets of IC/BPS. Altogether, our study provides a reference database of the phenotype of urothelial cells in an inflammatory environment that will not only increase our knowledge of their role in IC/BPS, but also advance our understanding of how urothelial cells shape tissue immunity in the bladder.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9421144 | PMC |
http://dx.doi.org/10.3389/fimmu.2022.960667 | DOI Listing |
Heliyon
January 2025
Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan.
Bladder cancer ranks as the 9th most common type of cancer worldwide. Approximately 70 % of bladder cancers are diagnosed as non-muscle invasive, and they are treated with transurethral resection followed by intravesical therapy. Doxorubicin is one of the effective cytotoxic drugs used in intravesical and systemic therapy, but its cardiotoxicity and nephrotoxicity limit therapeutic dosages.
View Article and Find Full Text PDFAnn Clin Lab Sci
November 2024
Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
Objective: Urinary cytology is a key diagnostic tool for evaluating suspected urinary tract carcinoma, primarily high-grade urothelial carcinoma. The Paris System for Reporting Urinary Cytology (TPS), introduced in 2016, aimed to standardize reporting, though challenges with subjectivity and variability in diagnosing Atypical Urothelial Cells (AUCs) persist.
Methods: This retrospective study explored the correlation between cytomorphological features in "atypical" diagnosis and UroVysion fluorescence hybridization (U-FISH) results.
BMC Vet Res
January 2025
Faculty of Veterinary Sciences, University of Buenos Aires, Buenos Aires, Argentina.
Background: Lower urinary tract disease is a common clinical condition in dogs, usually presenting with dysuria, pollakiuria and haematuria. Diabetes mellitus is a predisposing factor for urinary tract infection in both humans and dogs and does not necessarily present with clinical signs. In this case report, we describe for the first time a case of cystitis glandularis in a dog with diabetes mellitus, associated with Escherichia coli urinary tract infection.
View Article and Find Full Text PDFAdv Ther (Weinh)
January 2025
Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; Division of Pediatric Urology, Department of Surgery, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Center for Regenerative Nanomedicine, Northwestern University, Chicago, IL 60611, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA.
Impaired bladder compliance secondary to congenital or acquired bladder dysfunction can lead to irreversible kidney damage. This is managed with surgical augmentation utilizing intestinal tissue, which can cause stone formation, infections, and malignant transformation. Co-seeded bone marrow mesenchymal stem cell (MSC)/CD34+ hematopoietic stem cell (HSPC) scaffolds (PRS) have been successful in regenerating bladder tissue.
View Article and Find Full Text PDFFuture Oncol
January 2025
uDepartment of Medicine, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!