While crop yields have historically increased, drought resistance has become a major concern in the context of global climate change. The trade-off between crop yield and drought resistance is a common phenomenon; however, the underlying molecular modulators remain undetermined. Through genome-wide association study, we revealed that three non-synonymous variants in a drought-resistant allele of ZmSRO1d-R resulted in plasma membrane localization and enhanced mono-ADP-ribosyltransferase activity of ZmSRO1d toward ZmRBOHC, which increased reactive oxygen species (ROS) levels in guard cells and promoted stomatal closure. ZmSRO1d-R enhanced plant drought resilience and protected grain yields under drought conditions, but it led to yield drag under favorable conditions. In contrast, loss-of-function mutants of ZmRBOHC showed remarkably increased yields under well-watered conditions, whereas they showed compromised drought resistance. Interestingly, by analyzing 189 teosinte accessions, we found that the ZmSRO1d-R allele was present in teosinte but was selected against during maize domestication and modern breeding. Collectively, our work suggests that the allele frequency reduction of ZmSRO1d-R in breeding programs may have compromised maize drought resistance while increased yields. Therefore, introduction of the ZmSRO1d-R allele into modern maize cultivars would contribute to food security under drought stress caused by global climate change.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.molp.2022.08.009DOI Listing

Publication Analysis

Top Keywords

drought resistance
20
drought
8
global climate
8
climate change
8
increased yields
8
zmsro1d-r allele
8
resistance
5
zmsro1d-r
5
natural variations
4
variations zmsro1d
4

Similar Publications

Resource Segmentation: A New Dimension of the Segmentation Hypothesis in Drought Adaptive Strategies and Its Links to Tree Growth Performance.

Plant Cell Environ

January 2025

Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.

The segmentation hypothesis, a framework for understanding plant drought adaptive strategy, has long been based on hydraulic resistance and vulnerability. Storage of water and carbohydrate resources is another critical function and shapes plant drought adaption and fitness together with hydraulic efficiency and vulnerability. However, patterns and implications of the interdependency of stored water and carbohydrate resources in the context of the segmentation hypothesis are poorly understood.

View Article and Find Full Text PDF

ZmHB53, a Maize Homeodomain-Leucine Zipper I Transcription Factor Family Gene, Contributes to Abscisic Acid Sensitivity and Confers Seedling Drought Tolerance by Promoting the Activity of ZmPYL4.

Plant Cell Environ

January 2025

State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of Agronomy, Hebei Agricultural University, Baoding, Hebei, China.

Plant-specific homeodomain-leucine zipper I (HD-Zip I) transcription factors (TFs) crucially regulate plant drought tolerance. However, their specific roles in maize (Zea mays L.) regulating drought tolerance remain largely unreported.

View Article and Find Full Text PDF

High-precise determination of the drought and cold resistance of forage seeds using terahertz time-domain spectroscopy.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Inner Mongolia Grassland Station, Huhhot, Inner Mongolia 010020, China. Electronic address:

Owing to the complicated geographical locations and climates, cultivation and selection of forage seeds are challenging. For the first time, we qualitatively distinguished the drought and cold resistance of forage seeds with the time domain and refractive index spectra using terahertz (THz) time-domain spectroscopy. A multilayer structure propagation (MSP) model was developed based on the effective medium and light transport theory to reveal the underlying biological mechanisms of drought and cold resistance of forage seeds.

View Article and Find Full Text PDF

Low phosphate (LP) availability significantly impacts crop yield and quality. PHOSPHATE STARVATION RESPONSE1 (PHR1) along with PHR1-like 1 (PHL1) act as a key transcriptional regulator in a plant's adaptive response to LP conditions. Abscisic acid (ABA) plays an important role in how plants respond to environmental stresses like salinity and drought.

View Article and Find Full Text PDF

Natural biopolymer-based liquid mulching films (LMF) have received widespread attention, whereas the fragile structure and limited functionality have severely restricted their application. Herein, polydopamine-coated montmorillonite micro/nanoparticles enhanced pectin-based sprayable multifunctional liquid mulching films (P-MMT@PDA LMF) were prepared. Dopamine has abundant active sites, and its self-polymerization onto the surface of MMT improves the compatibility of MMT with pectin chains, facilitates the homogeneous dispersion of MMT@PDA in pectin polymers, and makes them more tightly entangled through hydrogen bonding.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!