We study the chemotaxis of a population of genetically identical swimming bacteria undergoing run and tumble dynamics driven by stochastic switching between clockwise and counterclockwise rotation of the flagellar rotary system, where the steady-state rate of the switching changes in different environments. Understanding chemotaxis quantitatively requires that one links the measured steady-state switching rates of the rotary system, as well as the directional changes of individual swimming bacteria in a gradient of chemoattractant/repellant, to the efficiency of a population of bacteria in moving up/down the gradient. Here we achieve this by using a probabilistic model, parametrized with our experimental data, and show that the response of a population to the gradient is complex. We find the changes to the steady-state switching rate in the absence of gradients affect the average speed of the swimming bacterial population response as well as the width of the distribution. Both must be taken into account when optimizing the overall response of the population in complex environments.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9515231 | PMC |
http://dx.doi.org/10.1016/j.bpj.2022.08.012 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!