Objective: Osteoarthritis (OA) presents cartilage damage in addition to chronic inflammation. However, self-recovery of damaged cartilage in an inflammatory environment is not possible. Mesenchymal stem cells (MSCs) in the bone marrow are a source of regenerative repair of damaged cartilage. To date, whether intra-luminal administration of the bone marrow can delay the progression of OA is still unknown. This study, therefore, aimed to explore the role of intra-bone marrow injection of Magnesium isoglycyrrhizinate (MgIG) in delaying the OA progression and to investigate the underlying mechanism.
Methods: Rabbit OA models were established using the anterior cruciate ligament transection method while a catheter was implanted into the bone marrow cavity. 1 week after surgery, MgIG treatment was started once a week for 4 weeks. The cartilage degradation was analyzed using hematoxylin-eosin staining, Masson's trichrome staining and Alcian blue staining. Additionally, the pro-inflammatory factors and cartilage regeneration genes involved in the cartilage degeneration and the underlying mechanisms in OA were detected using enzyme-linked immunosorbent assay, quantitative real-time PCR (qRT-PCR) and Western blotting.
Results: The results of histological staining revealed that intra-bone marrow injection of MgIG reduced degeneration and erosion of articular cartilage, substantially reducing the Osteoarthritis Research Society International scores. Furthermore, the productions of inflammatory cytokines in the bone marrow cavity and articular cavity such as interleukin-1β(IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) were inhibited upon the treatment of MgIG. At the same time, the expression of alkaline phosphate, tartrate-resistant acid phosphatase-5b (TRAP-5b) and C-telopeptides of type II collagen (CTX-II) in the blood also decreased and was positively correlated. On the contrary, cartilage-related genes in the bone marrow cavity such as type II collagen (Col II), Aggrecan (AGN), and SRY-box 9 (SOX9) were up-regulated, while matrix metalloproteinase-3 (MMP-3) was down-regulated. Mechanistically, MgIG was found to exert an anti-inflammatory effect and impart protection to the cartilage by inhibiting the NF-κB pathway.
Conclusion: Intra-bone marrow injection of MgIG might inhibit the activation of the NF-κB pathway in the progression of OA to exert an anti-inflammatory effect in the bone marrow cavity and articular cavity, thereby promoting cartilage regeneration of MSCs in the bone marrow, making it a potential new therapeutic intervention for the treatment of OA.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9429748 | PMC |
http://dx.doi.org/10.1186/s13018-022-03294-z | DOI Listing |
Best Pract Res Clin Haematol
December 2024
Centre for Haematology, Department of Immunology and Inflammation, Imperial College London, London, SW7 2AZ, UK.
Radiological accidents/incidents are common with nearly 400 reported since 1944 exposing about 3000 people to substantial doses of ionizing radiations with 127 deaths. Damage to hematopoietic stem and progenitor cells with resulting bone marrow failure is a common consequence of exposure to whole body acute high-dose and -dose-rate ionizing radiations and is termed hematopoietic-acute radiation syndrome, or H-ARS. Therapy of H-ARS includes transfusions, anti-bacterial and -viral drugs, molecularly-cloned hematopoietic growth factors and hematopoietic cell transplants.
View Article and Find Full Text PDFEur J Dent
March 2025
Department of Oral and Maxillofacial Pathology, Faculty of Oral and Dental Surgery and Medicine, Zagazing University, Zagazing, Egypt.
Objectives: The ultimate goal of stem cell (SC) transplantation is the regeneration of salivary gland function by transplanted SCs differentiating into salivary gland cells. Therefore, this study aimed to evaluate the regenerative capacity of bone marrow-derived mesenchymal stem cells (BM-MSCs) transplantation in irradiated mice using the immunohistochemical markers Ki-67 and CD34.
Material And Methods: Four groups of male mice were included in the study.
Exp Cell Res
March 2025
School of Stomatology, Xuzhou Medical University, Xuzhou, 221007, China; Xuzhou Stomatological Hospital, Xuzhou, 221007, China. Electronic address:
Hydrogel, as the most suitable bio-scaffold material for simulating extracellular matrix, can be used to study the influence of material mechanical properties on cell behavior under 3D conditions. Mechanical stimulation plays an important role in cartilage differentiation, especially for the mechanosensitive cell-bone marrow mesenchymal stem cells (BMSCs). Currently, TRPV4 and Cav1.
View Article and Find Full Text PDFThe patient was a 51-year-old man who was diagnosed as having prostate cancer(adenocarcinoma)in December Year X-3. He underwent total prostatectomy in June Year X-2. The lesions were confined to the right lobe of the prostate.
View Article and Find Full Text PDFObjective: This study aimed to investigate the role of Raf kinase inhibitor protein (RKIP) in degranulation induced by echinococcal cyst fluid (EgCF) in bone marrow-derived mast cells (BMMCs).
Methods: Primary BMMCs were isolated and cultured from the femurs and tibias of RKIP gene knockout (KO) and wild-type (WT) C57BL/6 mice. EgCF-induced degranulation models were established for both groups.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!