Straw-sheaf-like CoO for preparation of an electrochemical non-enzymatic glucose sensor.

Mikrochim Acta

Department of Physics, Dongguk University, Seoul, 04620, Republic of Korea.

Published: September 2022

3D straw-sheaf-like cobalt oxide (SS-CoO) was prepared via the hydrothermal method and inert gas calcination of precursors without the assistance of any template or surfactant. It was composed of numerous nanoneedles with a length of ~ 8 µm and a diameter of ~ 30 nm strongly tied in the center. The SS-CoO exhibited high crystallinity, a large surface area (39.01 m.g), a smaller pore size (6 nm), and lower charge transfer resistance (R = 9.35 Ω) at the electrode/electrolyte interface. A non-enzymatic glucose oxidizing electrode fabricated with SS-CoO showed a high sensitivity (669 µA.mM.cm), wide linear range (0.04-4.85 mM), low limit of detection (0.31 µM), good selectivity, fast response time (5 s), and high reproducibility with a relative standard deviation of 2.25%. In addition, its robust structure demonstrated excellent electrochemical stability by retaining 83.8% of the initial sensitivity when its current density vs. time response was measured for 75 min in bare electrolytes prior to the glucose-sensing test. Furthermore, it demonstrated excellent repeatability performance by retaining 87.0% of the initial sensitivity when a single electrode was tested for 4 cycles. The proposed robust structured 3D SS-CoO electrode successfully responds to the content of glucose in human saliva, which substantially proves its suitability in practical application. The synthesis technique is advantageous to prepare other metal oxides with interesting morphology and robust structure for the development of more reliable non-enzymatic glucometers and other electrochemical devices.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00604-022-05453-9DOI Listing

Publication Analysis

Top Keywords

non-enzymatic glucose
8
robust structure
8
demonstrated excellent
8
initial sensitivity
8
straw-sheaf-like coo
4
coo preparation
4
preparation of an electrochemical
4
of an electrochemical non-enzymatic
4
glucose sensor
4
sensor straw-sheaf-like
4

Similar Publications

Visible light photocatalysts hold great promise for water purification, yet research on highly efficient, non-toxic photocatalysts is limited. This study synthesized novel g-CN/AlOOH photocatalytic nanocomposites via thermal condensation, enhancing adsorption and visible light degradation by 36-fold and 11-fold, respectively, compared to g-CN alone. The nanocomposites achieved a 98% removal rate of methyl orange under xenon lamp irradiation (>400 nm) for 1 hour.

View Article and Find Full Text PDF

Owing to the adverse consequences of excess glucose (Glu) and hydrogen peroxide (HO) on humans, it is imperative to develop an electrochemical sensor for detection of these analytes with good selectivity and sensitivity. Herein, a nanohybrid comprising nickel cobaltite nanoparticles (NiCoO NPs) embedded on conductive TiCT nanosheets (NSs) has been prudently designed and employed for the electrochemical detection of Glu and HO. The developed nanohybrid has been systematically characterized using morphological and spectral techniques, and then immobilized on a glassy carbon electrode (GCE).

View Article and Find Full Text PDF

A step towards non-invasive diagnosis of diabetes mellitus using synthesized MOF-MXene hybrid material with extended gate field-effect transistor integration.

J Mater Chem B

December 2024

Laboratory of Sensors, Energy and Electronic devices (Lab SEED), Department of Physics and Nanotechnology, SRMIST, Kattankulathur 603203, Tamil Nadu, India.

The increasing demand for non-invasive and non-enzymatic glucose sensors is driven by the objective of eliminating the need for blood pricks from the body and enabling enzyme-free detection of glucose for diagnosing diabetes mellitus. To address this need, we synthesized Ni MOF-MXene (Ni) hybrid material through a one-pot synthesis method, which acts as a catalyst to detect salivary glucose using an extended gate field effect transistor (EGFET) method. The resulting sensor exhibits good selectivity towards glucose over common interfering molecules such as sucrose, fructose, maltose, uric acid, and ascorbic acid under physiological conditions in saliva.

View Article and Find Full Text PDF

Metabolic syndrome (MetS) is driven by a complex interplay of genetic, lifestyle, and dietary factors, leading to weight gain, insulin resistance, dyslipidemia, and chronic inflammation. Gut microbiota dysbiosis has been recently recognized as a key contributor to MetS, leading to advancements in gut microbiome-based interventions to improve health outcomes. Considering the unique challenges associated with the use of pre/probiotics, short-chain fatty acids (SCFA), also known as postbiotics, have emerged as promising therapeutic agents due to their role in modulating host metabolism and physiology.

View Article and Find Full Text PDF

The preparation of binary metal chalcogenides with ideal architectures can effectively enhance the electrocatalytic properties of these materials, as promising glucose sensors. Herein, CoMn-S spheres were synthesized using CoMn-glycerate as the precursor, followed by a sulfidation reaction. First, glycerate spheres were prepared by solvothermal treatment of Co and Mn ions in isopropanol solvent mixed with glycerol.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!