Trans-corneal electrical stimulation (TcES) produces therapeutic effects on many ophthalmic diseases non-invasively. Existing clinical TcES devices use largely variable design of electrode distribution and stimulation parameters. Better understanding of how electrode configuration paradigms and stimulation parameters influence the electric field distribution on the retina, will be beneficial to the design of next-generation TcES devices.In this study, we constructed a realistic finite element human head model with fine eyeball structure. Commonly used DTL-Plus and ERG-Jet electrodes were simulated. We then conductedinvestigations of retina observation surface (ROS) electric field distributions induced by different return electrode configuration paradigms and different stimulus intensities.Our results suggested that the ROS electric field distribution could be modulated by re-designing TcES electrode settings and stimulus parameters. Under far return location paradigms, either DTL-Plus or ERG-Jet approach could induce almost identical ROS electric field distribution regardless where the far return was located. However, compared with the ERG-Jet mode, DTL-Plus stimulation induced stronger nasal lateralization. In contrast, ERG-Jet stimulation induced relatively stronger temporal lateralization. The ROS lateralization can be further tweaked by changing the DTL-Plus electrode length.These results may contribute to the understanding of the characteristics of DTL-Plus and ERG-Jet electrodes based electric field distribution on the retina, providing practical implications for the therapeutic application of TcES.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1741-2552/ac8e32DOI Listing

Publication Analysis

Top Keywords

electric field
24
field distribution
20
dtl-plus erg-jet
12
ros electric
12
trans-corneal electrical
8
electrical stimulation
8
stimulation parameters
8
electrode configuration
8
configuration paradigms
8
distribution retina
8

Similar Publications

Multi-gate neuron-like transistors based on ensembles of aligned nanowires on flexible substrates.

Nano Converg

January 2025

Bendable Electronics and Sustainable Technologies (BEST) Group, Electrical and Computer Engineering Department, Northeastern University, Boston, MA, 02115, USA.

The intriguing way the receptors in biological skin encode the tactile data has inspired the development of electronic skins (e-skin) with brain-inspired or neuromorphic computing. Starting with local (near sensor) data processing, there is an inherent mechanism in play that helps to scale down the data. This is particularly attractive when one considers the huge data produced by large number of sensors expected in a large area e-skin such as the whole-body skin of a robot.

View Article and Find Full Text PDF

Understanding the interfacial interaction mechanisms between oil and minerals is of vital importance in the applications of petroleum production and environmental protection. In this work, the interactions of dodecane with mica and calcite in aqueous media were investigated by using the drop probe technique based on atomic force microscopy. For the dodecane-mica interactions, the electrical double layer (EDL) repulsion dominated in 10 mM NaCl solution, and a higher pH facilitated the detachment of dodecane.

View Article and Find Full Text PDF

Dinitrogen Activation: A Novel Approach with P/B Intermolecular FLP.

J Phys Chem A

January 2025

School of Applied Science and Humanities, Haldia Institute of Technology, ICARE Complex, Haldia 721657, India.

This study explores the reactivity of a new intermolecular P/B frustrated Lewis pair in the context of dinitrogen activation through a push-pull mechanism. The ab initio molecular dynamics model known as atom-centered density matrix propagation plays a pivotal role in elucidating the weakly associated encounter complex. In-depth analysis, mainly through intrinsic reaction coordinate calculations, supports a single-step mechanism.

View Article and Find Full Text PDF

The electrical conductivity of human tissues is a major source of uncertainty when modelling the interactions between electromagnetic fields and the human body. The aim of this study is to estimate human tissue conductivities in vivo over the low-frequency range, from 30 Hz to 1 MHz. Noninvasive impedance measurements, medical imaging, and 3D surface scanning were performed on the forearms of ten volunteer test subjects.

View Article and Find Full Text PDF

Directed collective cell migration is essential for morphogenesis, and chemical, electrical, mechanical and topological features have been shown to guide cell migration in vitro. Here we provide in vivo evidence showing that endogenous electric fields drive the directed collective cell migration of an embryonic stem cell population-the cephalic neural crest of Xenopus laevis. We demonstrate that the voltage-sensitive phosphatase 1 is a key component of the molecular mechanism, enabling neural crest cells to specifically transduce electric fields into a directional cue in vivo.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!